Лінійні однорідні диференціальні рівняння
Методи розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. Властивості розв’язку однорідних рівнянь методом Ейлера та матричним. Задача Коші: частинний розв’язок неоднорідних систем, що задовольняє нульовій початковій умові.
Подобные документы
Матричний метод як універсальний метод розв’язку лінійних однорідних систем. Диференціальні рівняння. Характеристичне рівняння матриці. Набір власних векторів, що відповідають різним власним числам. Загальний розв’язок лінійного неоднорідного рівняння.
реферат, добавлен 10.01.2009Лінійні однорідні та неоднорідні диференціальні рівняння другого порядку із сталими коефіцієнтами, розв'язок за формулою Ейлера. Рівняння із спеціальною правою частиною, використання методу Лагранжа. Рішення лінійних диференціальних рівнянь n-гo порядку.
лекция, добавлен 19.11.2009Історичний обрис розвитку теорії диференціальних рівнянь. Лінійні однорідні та неоднорідні рівняння 2-го порядку з сталими коефіцієнтами. Основні види диференціальних рівнянь 1-го та 2-го порядку та методи їх розв’язування. Графічний метод інтегрування.
реферат, добавлен 29.11.2014Головний аналіз диференціального рівняння, що містить аргумент, функцію та її похідну. Особливість методики розв’язку задачі Коші. Лінійні та однорідні завдання другого порядку зі сталими коефіцієнтами залежно від коренів характеристичної теореми.
методичка, добавлен 07.09.2014Розв’язування систем лінійних рівнянь з довільним числом невідомих. Методи розв'язування систем лінійних рівнянь: точні й ітераційні. Система двох рівнянь з двома невідомими. Розв’язання систем лінійних рівнянь методом Гауса, Крамера, матричним методом.
курсовая работа, добавлен 23.04.2011Дослідження питання існування неперервних розв'язків систем лінійних і нелінійних різницевих рівнянь із запізненнями, розробка методу їх побудови. Побудова для систем лінійних рівнянь представлення загального неперервного розв'язку і вивчення структури.
автореферат, добавлен 22.07.2014- 7. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Розв’язння задачі Коші для багатовимірних систем лінійних функціонально-диференціальних рівнянь загального вигляду. Монотонна залежність розв’язання початкової задачі від адитивних збурень заданого рівняння та початкових умов, ітераційні процеси.
автореферат, добавлен 29.07.2014 Поняття звичайного диференціального рівняння, існування та єдність його розв'язку. Метод ламаних Ейлера. Наближене розв'язання диференціального рівняння І порядку. Загальний розв'язок рівняння у'=у+3 і задача Коші для рівняння з початковою умовою: у(0)=1.
контрольная работа, добавлен 06.10.2010Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Властивості розв'язків лінійного однорідного диференціального рівняння. Необхідні і достатні умови лінійної незалежності розв'язків лінійного однорідного диференціального рівняння n–го порядку. Фундаментальна система розв'язків диференціального рівняння.
реферат, добавлен 30.05.2013Прямі і наближені методи розв’язання систем лінійних алгебраїчних рівнянь. Метод Гауса. Чисельне розв’язання нелінійних алгебраїчних і трансцендентних рівнянь та їх систем. Наближене розв’язання крайової задачі для звичайних диференціальних рівнянь.
курс лекций, добавлен 10.04.2012Обчислювальні методи розв’язку нелінійних рівнянь. Методи лінійної алгебри. Знаходження визначника матриці методом алгебраїчних доповнень. Інтерполювання функцій. Методи чисельного інтегрування функцій. Розв’язування звичайних диференціальних рівнянь.
лекция, добавлен 13.09.2010Умови порушення єдиності розв’язку задачі Діріхле з комплексними матричними коефіцієнтами в просторах гладких функцій з поліноміальним ростом на нескінченності для диференціального рівняння другого порядку. Принципи однозначної розв’язності задачі Коші.
автореферат, добавлен 24.07.2014Розгляд фундаментального розв’язку задачі Коші. Параболічні системи типу Шилова із залежними від просторової змінної молодшими коефіцієнтами. Дослідження властивостей параболічних рівнянь із змінними коефіцієнтами обмеженої гладкості та невід’ємним родом.
статья, добавлен 25.08.2016Поява диференціальних рівнянь. Методи збурень, які використовуються в механіці. Умови існування періодичних розв’язків. Теореми про граничні значення. Нелінійні диференціальні рівняння другого порядку. Методи розв’язання деяких типів нелінійних рівнянь.
курсовая работа, добавлен 22.06.2012Побудова теорії розв’язності і обґрунтування проекційних методів розв’язання СІР та їх систем з ядром Коші та зі зсувом Карлемана. Підрахунок точної кількості лінійно незалежних розв’язків лінійних однорідних СІР зі зсувом Карлемана та їх систем.
автореферат, добавлен 12.07.2014Звичайні диференціальні рівняння зі змінними коефіцієнтами, які зводяться до рівнянь зі сталими коефіцієнтами за допомогою заміни змінної. Коливання систем зі змінними параметрами. Інтегрування в квадратурах. Точні рішення для класу лінійних рівнянь.
статья, добавлен 30.01.2017Поняття, означення й теорема про достатні умови існування і єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Випадки, коли рівняння можна проінтегрувати. Загальний метод введення параметра, неповні рівняння. Розв’язок задачі Коші.
реферат, добавлен 06.11.2017Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.
лекция, добавлен 01.05.2014- 20. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Доведення теорем про пов’язані з лінійною задачею Коші функціонально-диференціальні нерівності. Отримання ряду умов, які гарантують однозначну розв’язність початкової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду.
автореферат, добавлен 29.07.2014 Дослідження асимптотичних властивостей розв’язків лінійних диференціально-функціональних рівнянь нейтрального типу. Особливості знаходження достатніх умов асимптотичної стійкості тривіального розв’язку квазілінійних диференціально-функціональних рівнянь.
автореферат, добавлен 29.07.2014Вивчення основних понять i визначень стійкості по Ляпунову. Дослідження стійкості лінійних нестаціонарних систем. Стійкість розв’язку лінійних систем з сталими коефіцієнтами. Критерій Гурвiца. Критерій стійкості автономної системи за першим наближенням.
курсовая работа, добавлен 19.10.2016Дослідження особливостей основних питань однозначної розв’язності деяких крайових задач для загальних диференціальних рівнянь і систем із сталими комплексними коефіцієнтами в напівалгебраїчних областях. Характеристика методу двоїстості рівняння-область.
автореферат, добавлен 29.08.2015Основні поняття та означення диференціального рівняння першого порядку, теорема про достатні умови існування та єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Загальний метод введення параметра. Розв’язок неповних рівнянь.
контрольная работа, добавлен 13.04.2011- 25. Лінійні рівняння
Розробка конспекту уроку з математики. Подання навчального матеріалу уроку в двох блоках. Рівняння (лінійні) та їх властивості. Використання рівнянь під час розв'язання тестових завдань. Лінійні рівняння з однією змінною. Розв'язування рівнянь та задач.
конспект урока, добавлен 20.09.2018