Анализ регрессионных моделей
Математическое моделирование облака рассеяния. Исследование нелинейной корреляции. Составление матрицы планирования для четырех факторов. Нахождение коэффициентов регрессионного уравнения для данной матрицы. Определение значимости коэффициентов регрессии.
Подобные документы
Понятие регрессионного анализа и его цели. Использование линейных и нелинейных функций при построении регрессионных моделей. Проверка на значимость коэффициентов регрессии по статистическому критерию Стьюдента и ее уравнения с помощью F-критерия Фишера.
контрольная работа, добавлен 19.11.2013Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
курсовая работа, добавлен 12.12.2014Задачи корреляционно-регрессионного анализа. Корреляция случайных величин. Линейная регрессия, описание объекта, факторы, формирующие моделируемое явление. Анализ матрицы коэффициентов парных корреляций. Построение уравнения регрессии, смысл модели.
реферат, добавлен 20.03.2010Определение критериев оптимальности планирования. Построение матрицы планирования с ортогональными вектор-столбцами. Оценка коэффициентов уравнения регрессии. Проверка адекватности описания объекта полиномом второго порядка с помощью F-критерия Фишера.
контрольная работа, добавлен 25.01.2024Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.
контрольная работа, добавлен 23.05.2021Расчет старших коэффициентов и построение разложения в асимптотический ряд фундаментальной матрицы для линейной сингулярно возмущенной динамической системы в случае нестационарной матрицы коэффициентов. Особенности применения метода пограничных функций.
курсовая работа, добавлен 17.05.2014Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.
практическая работа, добавлен 31.10.2014Нахождение транспонированной матрицы, приведение её к ступенчатому виду элементарными преобразованиями. Составление уравнения касательной к заданной кривой и перпендикулярной прямой. Характеристика заданной функции, схематичное построение её графика.
контрольная работа, добавлен 18.04.2012Основные формулы, используемые в методе Крамера и методе обратной матрицы при решении системы линейных алгебраических уравнений. Решение СЛАУ с помощью MS Excel. Ввод матрицы коэффициентов и вектора свободных коэффициентов. Определение обратной матрицы.
лабораторная работа, добавлен 11.03.2011Определение и проверка значения коэффициентов уравнения регрессии. Число степеней свободы в дисперсии адекватности. Получение уравнения регрессии 1 и 2 порядка в результате планирования и постановки эксперимента с учетом математических преобразований.
курсовая работа, добавлен 30.05.2018Ошибки коэффициентов уравнений регрессии, анализ остаточной дисперсии. Взаимокоррелирующие аргументы, выбор аргументов в уравнении регрессии при их взаимной корреляции в лесном хозяйстве. Зависимость высоты дерева от качества условий местопроизрастания.
реферат, добавлен 29.03.2018Изучение теоремы о верхнем и нижнем разложении матрицы, имеющей ненулевую диагональ. Ознакомление с расчетными формулами, используемыми для построения матриц. Очерк математических выражений по методу Гаусса и алгоритмы для ряда системных уравнений.
презентация, добавлен 30.10.2013Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".
статья, добавлен 03.11.2015Исследование определения средней величины результирующего вектора системы сил, действующих на плиту крепления с привлечением методов математической теории. Вычисление коэффициентов регрессии. Построение матрицы планирования трехфакторного эксперимента.
статья, добавлен 19.05.2018Сущность и типы уравнения регрессии как формулы статистической связи между переменными. Теоретическая и прямая линии регрессии, проверка адекватности уравнения регрессии. Оценка значимости парного коэффициента корреляции и коэффициент детерминации.
контрольная работа, добавлен 26.06.2014Рототабельное планирование эксперимента второго порядка. Порядок проверки значимости коэффициентов уравнения регрессии с помощью критерия Стьюдента. Проверка адекватности уравнения регрессии с помощью критерия Фишера. Построение чертежа линии уровня.
контрольная работа, добавлен 20.10.2013F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Распределение оценок коэффициентов в асимптотике. Проверка значимости коэффициентов множественной регрессии по критерию Стьюдента. Предсказание среднего значения зависимой переменной.
лекция, добавлен 15.06.2014Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.
презентация, добавлен 18.12.2012Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.
презентация, добавлен 23.04.2015Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.
доклад, добавлен 19.11.2012Анализ динамики роста стоимости основных рабочих фондов. Расчёт парного коэффициента корреляции. Проверка значимости с помощью статистики Стьюдента. Вычисление оценки неизвестных параметров уравнения парной регрессии по методу наименьших квадратов.
контрольная работа, добавлен 15.03.2017Использование модели рассеяния активной примеси внутри облака. Применение полуэмпирического уравнения турбулентной диффузии для описания модели облака и линеаризованных уравнений движения Навье-Стокса при моделировании процесса рассеивания реагента.
автореферат, добавлен 10.12.2013- 24. Решение матриц
Этапы нахождение определителя матрицы, минора и алгебраического дополнения к элементам матрицы. Особенности решение системы линейных алгебраических уравнений методами Крамера и Гаусса. Нахождение собственных чисел и собственных векторов матрицы.
контрольная работа, добавлен 11.04.2009 Нахождение выборочных коэффициентов ковариации и корреляции. Использование критерия Стьюдента и проверка статистической значимости коэффициента корреляции. Числовые характеристики выборки. Таблица формул для расчета основных выборочных характеристик.
лабораторная работа, добавлен 14.08.2017