Дослідження нестандартних підходів до доведення нерівностей
Доведення нерівностей за опорою означення. Синтетичний метод доведення нерівностей. Нерівність про середнє арифметичне для двох чисел. Подання буквених виразів у вигляді суми, різниці. Розкладання буквених виразів на множники. Метод математичної індукції.
Подобные документы
Застосування методів аналітичної геометрії, векторної алгебри, тригонометрії. Застосування геометричних співвідношень до доведення нерівностей. Визначення нерівності трикутника. Застосування векторів та похідної. Дослідження екстремальних властивостей.
учебное пособие, добавлен 13.07.2017Розв’язання задач на складання рівнянь, в яких кількість невідомих перевищує кількість рівнянь системи, які розв’язуються за допомогою нерівностей, з цілочисловими невідомими та в яких потрібно знаходити найбільші і найменші значення деяких виразів.
лекция, добавлен 25.01.2014Адитивні проблеми теорії чисел й дільників. Метод оцінок тригонометричних сум. Проблема дільників Титчмарша. Подання натуральних чисел у вигляді суми двох квадратів та єдиність такого подання. Подання натурального числа у вигляді суми чотирьох квадратів.
курсовая работа, добавлен 09.04.2015Провідна роль методу математичної індукції у вищій математиці. Повна і неповна індукція. Помилки в індуктивних міркуваннях. Принцип математичної індукції. Узагальнення принципу математичної індукції. Приклад доведення методом математичної індукції.
курсовая работа, добавлен 14.08.2008Побудова математичної моделі системи лінійних нерівностей зі змінними коефіцієнтами. Доведення умов сумісності. Відтворення математичної моделі кінетики речовин в організмі. Визначення оптимальних характеристик обслуговування. Методика розподілу ресурсів.
автореферат, добавлен 29.07.2014Доведення, що круг є опуклою множиною точок площини. Вужчий клас опуклих функцій, а саме диференційованих (або навіть двічі диференційованих) функцій на відповідних проміжках. Опуклість як джерело нерівностей. Нерівність Ієнсена та його наслідки.
курсовая работа, добавлен 15.03.2020Нерівності першого степеня з одним невідомим, квадратні нерівності. Метод інтервалів. Ірраціональні, показникові та логарифмічні нерівності. Типові задачі, що зводяться до розв'язування систем нерівностей. Алгебраїчні нерівності Кошіта та Гельдера.
лекция, добавлен 24.01.2014Геометричне зображення суми і різниці комплексних чисел. Математичний алгоритм переходу із тригонометричної форми в алгебраїчну і навпаки. Методика побудови таблиці Келі для операції множення. Доведення формули Муавра методом математичної індукції.
учебное пособие, добавлен 06.11.2015Сутність і математичне обґрунтування систем лінійних нерівностей, внутрішня структура та характерні властивості. Основні задачі і поняття лінійного програмування, його закономірності та значення. Транспортна задача та головні принципи її розв’язання.
лекция, добавлен 08.08.2014Встановлення нерівностей дискретного та континуального типу обернених середніх гармонійних. Дослідження та побудова аналітичної теорії гіллястих ланцюгових дробів та їх континуального аналогу інтегральних ланцюгових дробів. Поява нерівностей як наслідок.
статья, добавлен 30.01.2017Отримання точних нерівностей для норм проміжних похідних функцій та розв'язання на цій основі важливих екстремальних задач аналізу. Вивчення тригонометричних поліномів і поліноміальних сплайнів. Взаємозв'язки точних нерівностей типу Колмогорова.
автореферат, добавлен 13.07.2014Специфіка оберненої, протилежної і оберненої до протилежної теорем, їх виростання в розрахунках, найпростіші схеми правильних міркувань. Характеристика та значення дедуктивного доведення та повної індукції, опис та сутність методу від супротивного.
реферат, добавлен 17.04.2015Визначення поняття та видів подібних доданків. Відпрацювання навичок застосування розподільної властивості множення для спрощення обчислень значень числових виразів та спрощення буквених виразів, а також для винесення спільного множника за дужки.
конспект урока, добавлен 27.09.2018Дослідження видів найбільш розповсюджених математичних рівнянь. Приклади розв’язувань завдань на рух. Засоби вирішення задач, що містять в умові невідомі числові величини. Вирішування прикладів за допомогою нерівностей та цілочислових невідомих.
лекция, добавлен 26.01.2014Характеристика прикладів числових множин. Особливості застосування похідної для доведення рівностей та нерівностей. Етапи побудови графіка функцій. Аналіз формул Ньютона-Лейбніца. Розгляд основних понять теорії ймовірностей та елементів комбінаторики.
книга, добавлен 16.10.2012Розв’язання кубічного алгебраїчного рівняння. Математична заміна підкореневого виразу. Метод Феррарі для рівнянь четвертого степеня. Виділення повного квадрата під радикалами. Розклад нерівностей на множники. Рівняння з кубічними ірраціональностями.
лекция, добавлен 24.01.2014Проведено математичне дослідження коректності задач для псевдопараболічних систем рівнянь та варіаційних нерівностей і властивостей розв’язків цих задач, за допомогою аналогу методу Гальоркіна, методів штрафу, регуляризації, монотонності та компактності.
диссертация, добавлен 27.04.2014- 18. Нерівності
Основні поняття показових логарифмічних рівнянь. Нерівності першої степені з одним невідомим. Квадратні нерівності та метод інтервалів. Ірраціональні та показові, логарифмічні, тригонометричні та алгебраїчні нерівності. Сутність системи нерівностей.
лекция, добавлен 26.01.2014 Історія виникнення та властивості логарифмів, їх зв'язок з показниковою функцією. Розгляд способів рішення логарифмічних рівнянь й нерівностей, аналіз типових складностей при їх розв’язанні. Застосування конкретно-індуктивного методу на уроках алгебри.
статья, добавлен 27.11.2019Особливості алгоритмічного підходу до доведення теорем з допомогою логіки предикатів. Аналіз математичної логіки, її місце у математичній науці. Знайомство з буквами формальної арифметики. Значення застосування логіки предикатів для доведення теорем.
практическая работа, добавлен 08.05.2012Подання тригонометричних функцій через тангенс половинного кута. Обчислення похідних тригонометричних функцій. Тригонометричні тотожності. Приклади перетворень тригонометричних виразів, доведення тотожності, знайдення добутку. Вправи для розв’язування.
лекция, добавлен 24.01.2014Тригонометричні відношення сторін в трикутнику. Вивчення геометричної теореми Піфагора. Означення і графіки тригонометричних функцій. Формули додавання кутів фігур. Таблиця значень функцій косинусів і синусів. Перетворення добутків нерівностей на суми.
лекция, добавлен 24.01.2014Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.
курсовая работа, добавлен 12.11.2018Встановлення співвідношення між сторонами прямокутного трикутника, доведення зворотного твердження теореми Піфагора. Різноманітні методи доведення з використанням геометричних та математичних функцій, підрахунок гіпотенузи трикутника за даними катетами.
доклад, добавлен 10.02.2011Використання області допустимих значень при розв’язуванні ірраціональних нерівностей. Пошук та дослідження похідної підкореневої функції. Вживання методів інтервалів та рівносильних переходів. Введення заміни шуканої змінної для спрощення нерівності.
курсовая работа, добавлен 18.03.2015