Ключ Давида (о решении второй математической проблемы Дэвида Гильберта)

Историческая реконструкция трех кризисов в основаниях математики в рамках философской школы интуиционизма. Фальсификация истории возникновения теории несоизмеримых отрезков, современной теории иррациональных чисел. Решение второй проблемы Д. Гильберта.

Подобные документы

  • Доклад немецкого математика Давида Гильберта на Международном конгрессе 1900 года в Париже "Математические проблемы". Суть 10-ой проблемы Гильберта, которая называется "Задача о разрешении диофантовых уравнений", на примерах алгебраических уравнений.

    реферат, добавлен 05.12.2012

  • Познавательный и теоретический аспект логической, геометрической и арифметической составляющих в программе формализма. Основные положения и новый подход к анализу формалистской программы Гильберта. Рассмотрение интерпретации "трех компонент" формализма.

    статья, добавлен 15.05.2021

  • Система аксиом Гильберта. Аксиоматика школьного курса по учебнику Погорелова. Основное назначение группы аксиом непрерывности. Аксиомы меры для углов и отрезков. Аксиома существования треугольника, равного данному. Аксиома о параллельных Н. Лобачевского.

    контрольная работа, добавлен 14.07.2012

  • История появления проблем простых чисел. Асиптотический Закон рапределения простых чисел в натуральном ряду. Роль простых чисел в математике. "Тернарная" проблема Гольдбаха. Список проблем для Теории чисел, аналогичный списку Гильберта, его описание.

    статья, добавлен 24.08.2020

  • Геометрия - наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Определение роли, которую сыграла неевклидова геометрия в математике и теории геометризованной гравитации Гросмана-Гильберта-Эйнштейна.

    статья, добавлен 06.04.2019

  • Новый взгляд на историю возникновения математики как науки. Развития греческой арифметики. Дедуктивное построение предмета. Внутренние математические проблемы. Порядок систематических теорий. Аксиомы как натуральные числа. Доклады Гильберта и Пуанкаре.

    учебное пособие, добавлен 28.12.2013

  • Изучение построения фундамента для математики в XX в. Понятие истинности в математике, абсолютизация человеческих представлений о реальном мире. Формализация математической логики. Эквивалентность интуитивных и формальных доказательств в тезисе Гильберта.

    реферат, добавлен 28.10.2018

  • Исследование онтологического статуса иррациональных чисел в контексте идеалов построения математического знания в четырёх парадигмах математической онтологии. Специфики в трактовке статуса математических объектов при изменении гносеологических традиций.

    статья, добавлен 27.09.2013

  • Структура сопоставимых нестандартных моделей. Программа Гильберта формализации математики и теорема Гёделя о неполноте. Формальный математический анализ теории числовых систем. Анализ нестандартной модели формальной арифметики и ее некатегоричность.

    курсовая работа, добавлен 28.04.2022

  • Создание современной системы записи дробовых чисел в Индии. Особенность методики работы с долями и дробями в начальной школе. Основные проблемы, возникающие у младших школьников при решении задач. Характеристика концепции преподавания математики у детей.

    курсовая работа, добавлен 02.06.2015

  • Описание истории создания фундаментальной математической теории − теории групп – французским математиком Э. Галуа. Исследование проблемы разрешимости алгебраических уравнений, вопрос о существовании их решений в радикалах. Сущность теории групп Галу

    статья, добавлен 26.04.2019

  • Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.

    реферат, добавлен 06.04.2009

  • Модули Капланского-Гильберта над L0. L0-линейные и L0-ограниченные отображения. Спектр L0-линейных и L0-ограниченных операторов. Спектральная теорема для линейных L0-ограниченных самосопряженных операторов в q-конечномерных модулях Капланского-Гильберта.

    диссертация, добавлен 19.06.2015

  • Алгоритм построения графов сочетаний простых делителей. Структура графов первой и второй версий. Составление таблиц факторизаций на любом отрезке натурального ряда и установление закона распределения простых чисел. Элементарные методы в теории чисел.

    статья, добавлен 26.05.2017

  • Правила аксиоматического построения математических теорий. Аксиоматическое построение системы натуральных чисел. Аксиомы Пеано, метод математической индукции. Умножение целых неотрицательных чисел в количественной теории, таблица и законы умножения.

    реферат, добавлен 10.01.2017

  • Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.

    презентация, добавлен 05.10.2015

  • Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.

    статья, добавлен 11.02.2021

  • Научные интересы Д.Д. Мордухай-Болтовского. Исследования в области геометрических построений в пространстве Лобачевского. Работы в области математической биологии. Проблемы методики обучения математике. Исследования по истории методики математики.

    лекция, добавлен 30.07.2015

  • Ознакомление с методами решения основных задач математической статистики с использованием критерия согласия Пирсона. Изучение характеристических функций, которые используются в дальнейшем в теории математической статистики и теории вероятностей.

    курсовая работа, добавлен 21.04.2015

  • Системы общих комплексных чисел. Решение уравнений второй и высших степеней. Применение двойных чисел, формулы их сложения, вычитания, умножения и деления двойных чисел. Ориентированные прямые плоскости Лобачевского. Предельный случай пересекающих прямых.

    реферат, добавлен 30.11.2015

  • Теорема Пифагора. Основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объёмов в главном труде Евклида "Начала". Постулаты Евклида, теорема Виета. Арифмометр Лейбница, формула Эйлера.

    презентация, добавлен 09.05.2021

  • Рассмотрение биографии и научных достижений Давида Гильберта - одного из истинно великих математиков своего времени. Его труды и его вдохновляющая личность ученого оказали сильное влияние на развитие математических наук в первой половине двадцатого века.

    реферат, добавлен 13.09.2011

  • Число, как основное понятие математики. Начало тождественности, принцип формы неопределенной двоицы. Абстрактное отношение величины к другой величине и аксиоматическое построение математической теории. Функции чисел и характеристика количества предметов.

    реферат, добавлен 05.10.2015

  • Рассмотрение математической науки как науки о структурах, порядке исчисления. История возникновения операций подсчёта, измерения и описания форм реальных объектов. Дедуктивный характер греческой математики. Формирование теории Пифагора в геометрии.

    реферат, добавлен 04.02.2014

  • Обращение к истокам зарождения математики. Описание истории возникновения счета и измерения как средств сравнения различных чисел, длин, площадей и объемов. Рассмотрение древних способов записи чисел, возникновения понятий о геометрических фигурах.

    реферат, добавлен 04.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.