Координатное и инвариантное определения дивергенции векторного поля. Теорема Остроградского-Гаусса. Физический смысл дивергенции

Суть понятия "дивергенция векторного поля", ее свойства, координатное и инвариантное определение. Скалярные и векторные поля. Применение Теоремы Остроградского-Гаусса для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.

Подобные документы

  • Скалярные и векторные поля. Циркуляция векторного поля вдоль кривой. Формула Гаусса-Остроградского, дивергенция. Формула Стокса, ротор векторного поля. Потенциальное поле и его свойства. Соленоидальное поле и его свойства. Расчет векторного потенциала.

    курсовая работа, добавлен 24.03.2009

  • Изложение интегральных характеристик полей: дивергенция и ротор, их физический смысл; криволинейные и поверхностные интегралы, их вычисление; поток и дивергенция векторного поля; циркуляция и ротор векторного поля; теоремы Гаусса-Остроградского и Стокса.

    курсовая работа, добавлен 20.03.2014

  • Отличительные черты скалярных и векторных физических величин. Градиент скалярного поля, дивергенция векторного поля и теорема Остроградского-Гаусса. Описание ротора векторного поля и теоремы Стокса. Задачи на использование метода оператора набла.

    реферат, добавлен 21.06.2016

  • Формула Остроградского-Гаусса. Понятие о задачах векторного анализа и теории поля. Определение скалярного поля. Циркуляция векторного поля. Потенциальное векторное поле. Собственные интегралы, зависящие от параметра. Признаки равномерной сходимости.

    курс лекций, добавлен 15.05.2016

  • Связь между поверхностными интегралами первого и второго рода, свойства поверхностного интеграла второго рода и формулы Остроградского-Гаусса и Стокса. Поток векторного поля. Физическое приложение поверхностного интеграла как потока векторного поля.

    контрольная работа, добавлен 23.04.2011

  • Вычисление потока векторного поля через полную поверхность пирамиды в направлении нормали. Вычисление циркуляции векторного поля по замкнутому контуру путем применения теоремы Стокса к контуру и ограниченной им поверхности. Теорема Остроградского.

    реферат, добавлен 22.12.2010

  • Характеристика свойства полей: потенциальное, соленоидальное и гармоническое (уравнение Лапласа) векторное поле; векторный потенциал поля; центральные скалярные и векторные поля. Задачи Дирихле, Неймана. Построение векторных полей по дивергенции и ротору.

    реферат, добавлен 20.03.2014

  • Основные понятия теории поля. Фиксированная система координат в пространстве. Рассмотрение основных характеристик и классификации скалярного и векторного полей. Формулы Стокса и Остроградского-Гаусса. Векторный дифференциальный оператор Гамильтона.

    лекция, добавлен 29.09.2014

  • Понятие кратных (двойных и тройных) интегралов, криволинейных и поверхностных. Основные определения и формулировки и базовые теоремы Грина, Стокса и Гаусса-Остроградского. Специфика их применения к решению соответствующих задач геометрии и механики.

    учебное пособие, добавлен 22.10.2014

  • Элементы математической теории скалярных и векторных полей. Характеристики скалярного поля. Потенциальное векторное поле, его свойства. Потенциальное несжимаемое поле и поле Лапласа (гармоническое). Теорема о разложимости произвольного векторного поля.

    реферат, добавлен 21.10.2014

  • Понятие геометрического места точек как поверхностного уровня скалярного поля. Порядок определения скорости изменения поля по направлениям координатных осей. Сущность градиента функции, особенности расчета. Теорема об ортогональности вектора градиента.

    лекция, добавлен 17.01.2014

  • Рассмотрение физических примеров скалярных полей. Нахождение и изображение линии и поверхности уровня скалярных полей. Изучение понятия вектор-градиент скалярного поля. Рассмотрение физического смысла потока векторного поля. Циркуляция векторного поля.

    презентация, добавлен 27.06.2015

  • Геометрические характеристики векторного поля. Дифференциальные операции 1 и 2 порядка, оператор Гамильтона. Виды векторных полей. Интеграл от векторной функции вдоль кривой. Работа и свойства потенциального поля. Примеры восстановления потенциала.

    презентация, добавлен 19.11.2017

  • Примеры вычислений поверхностного интеграла. Использование формул Остроградского-Гаусса и Стокса для вычисления площади поверхности и координат центра масс, моментов инерции материальных поверхностей с поверхностной плотностью распределения массы.

    презентация, добавлен 29.03.2021

  • Фазовые пространства. Векторные поля на прямой. Методы решения линейных уравнений. Действие диффеоморфизмов на векторные поля и на поля направлений. Теоремы о выпрямлении. Консервативная система с одной степенью свободы. Свойства, определитель экспоненты.

    учебное пособие, добавлен 24.09.2012

  • Исследование методов вычисления индекса нулевой изолированной особой точки плоского векторного поля. Описание подхода, помогающего свести полиномиальные векторные поля к векторным полям с известным индексом нуля через гомотопические преобразования.

    статья, добавлен 26.04.2019

  • Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.

    контрольная работа, добавлен 20.12.2011

  • Скалярное поле, производная по направлению, градиент функции. Оператор Гамильтона. Свойства векторного поля. Комплексные числа, формулы Эйлера. Производные и интеграл от функции комплексного переменного. Ряды Тейлора и Лорана. Вычеты и их использование.

    учебное пособие, добавлен 24.06.2014

  • Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.

    реферат, добавлен 21.03.2023

  • Определение вектора. Его коллинеарный и компланарный вид. Простейшие геометрические операции над векторами. Их линейная зависимость. Координатное представление скалярного и смешанного произведения слагаемых. Свойства направленного отрезка прямой в базисе.

    лекция, добавлен 23.12.2013

  • Понятие интеграла движения. Независимые интегралы движения для замкнутой системы. Асимптотическая аддитивность интегралов движения. Формулировка, доказательство теоремы Нётер. Некоторые замечания относительно теоремы Нётер. Сохранение аддитивной величины.

    контрольная работа, добавлен 19.11.2017

  • Решение систем линейных уравнений методом Гаусса. Линейные операции над векторами и разложение вектора по ортам координатных осей. Геометрический и физический смысл определенного интеграла. Предел и непрерывность функции комплексного переменного.

    курс лекций, добавлен 18.04.2016

  • Определенный интеграл по Риману. Теоремы о существовании интеграла от непрерывной и монотонной функции. Неравенства и теорема о среднем. Приближенное вычисление определенных интегралов. Метод параболических трапеций (метод Симпсона). Суть числовых рядов.

    контрольная работа, добавлен 20.02.2012

  • Характеристика особенностей теоремы Муавра-Лапласа - одной из предельных теорем теории вероятностей. Сущность первообразной функции Гаусса. Формула Ньютона-Лейбница. Стандартный интеграл Лапласа. Теорема сложения вероятности для несовместных событий.

    реферат, добавлен 02.01.2013

  • Область определения функции нескольких переменных. Частные производные функций нескольких переменных. Дифференциал функции нескольких переменных. Скалярные и векторные поля. Производная по направлению. Градиент дифференцируемого скалярного поля.

    лекция, добавлен 29.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.