История тригонометрии
Определение термина "тригонометрия". Развитие тригонометрии как раздела астрономии. Возникновение понятия "тангенс". Вклад арабских ученых в развитие науки. Таблица синусов, тангенсов и котангенсов ученого аль-Маразви. Развитие тригонометрии в Индии.
Подобные документы
История происхождения тригонометрии как научного раздела астрономии, вклад ученых древности в ее развитие. Особенности применения математических знаний к решению задач повседневной практики, их использование в дальнейшей профессиональной деятельности.
реферат, добавлен 20.01.2017Книги немецкого математика Питискуса и измерение треугольников. Cвязь возникновения тригонометрии с землемерением, астрономией и строительным делом. Деятельность арабских ученых Аль-Батани (850-929), Абу-ль-Вафа, Мухамед-бен Мухамеда и Туси Мухамед.
доклад, добавлен 12.03.2014Исследование истории возникновения и развития тригонометрии как раздела математики, изучающего тригонометрические функции и их приложения к геометрии. Определение расстояний до недоступных объектов и связь тригонометрии с практическими нуждами человека.
презентация, добавлен 04.02.2013Понятие тригонометрии как раздела математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Применение науки в древности для расчётов в астрономии, геодезии и архитектуре. Особенности ее возникновения и стимул для развития.
реферат, добавлен 28.09.2014Краткий обзор развития тригонометрии, ее возникновение как одного из разделов астрономии. Теоремы сложения: тригонометрические функции суммы и разности аргументов, двойного и половинного аргумента, тангенсов, формулы площади треугольника, другие формулы.
контрольная работа, добавлен 22.05.2009Развитие землемерения, астрономии и строительного дела как одни из причин возникновения тригонометрии. Характеристика ключевых свойств тригонометрических функций. Синус - отношение противолежащего катета к гипотенузе. Основные формулы двойного угла.
презентация, добавлен 03.04.2015Преподавание математики в школе. Разработка и обоснование методики проведения курса по выбору "тригонометрия: от плоскости к пространству" на старшей ступени общего образования. Роль тригонометрии в учебном процессе. Место курса в школьной программе.
дипломная работа, добавлен 03.07.2018История функций. Первые таблицы для нахождения тангенсов и котангенсов. Теорема синусов для сферических треугольников. Основная формула нахождения тангенса. Доказательство теоремы тангенсов для сферических углов и синусов для плоских треугольников.
презентация, добавлен 11.05.2013Леонард Эйлер — швейцарский, немецкий и российский математик, внесший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Эйлеровские исследования в области тригонометрии, комплексных чисел и графов.
презентация, добавлен 10.04.2012Изложение исследований по теории точных матриц и основ тензорной тригонометрии, основанной на квадратичных метриках в многомерных арифметических пространствах. Представление тензорных тригонометрических ротаций и деформаций в элементарных формах.
монография, добавлен 28.12.2013История возникновения геометрии и тригонометрии. Первые методы нахождения неизвестных параметров треугольника. История жизни знаменитых геометров. Теорема Пифагора. Теория пределов. Понятие прямоугольной системы координат. Геометрические фигуры.
реферат, добавлен 15.01.2013Этапы развития математики как науки. Становление математики в Древней Греции, Индии, Средней Азии. Введение системы координат, методов измерения величин и понятия функции. Вклад русских ученых в развитие математики. Перспективы развития кибернетики.
реферат, добавлен 18.09.2014Развитие понятия о числе. Корни, степени и логарифмы. Координаты и векторы. Основы тригонометрии. Степенные, показательные, логарифмические и тригонометрические функции. Свойства многогранников. Начала математического анализа. Применение интеграла.
учебное пособие, добавлен 29.11.2014Основные тригонометрические тождества: формулы привидения, сложения, двойного и половинного угла, преобразования сумм тригонометрических функций в произведение. Графики и свойства обратных тригонометрических функций. Методы решения уравнений, неравенств.
контрольная работа, добавлен 16.06.2010Аксиоматический метод построения научной теории. Основные понятия. "Начала" Евклида. Модель планиметрии Лобачевского на евклидовой плоскости. Геометрия Лобачевского. Исторические сведения о развитии тригонометрии. Тригонометрические соотношения.
реферат, добавлен 14.07.2008Рассмотрение различных способов решения тригонометрических уравнений. Ознакомление с понятием и историей возниконовения тригонометрии. Составление алгоритма решения задания. Описание воспитания самостоятельности и творческого отношения к деятельности.
презентация, добавлен 19.11.2013Условия и особенности применения элементарной алгебры и тригонометрии в ряде случаев при решении задач на вычисление применение векторов. Методика составления плана решения, а также требования к данному процессу. Выделение неколлинеарных векторов.
реферат, добавлен 18.06.2015Меры измерения углов: градусная, радианная. Понятие тангенса, косинуса, синуса, арктангенса и котангенса, их геометрический смысл. Графики тригонометрических и обратных тригонометрических функций. Основные тригонометрические тождества и следствия из них.
лекция, добавлен 18.04.2012Тригонометрические функции как подвид элементарных функций. Анализ четности и периодичности, особенности построения графиков. Обратные тригонометрические функции и их характеристика. История развития тригонометрии и основные сферы ее применения.
презентация, добавлен 22.01.2013История появления геометрии, происхождение термина. Познания в этой науке древних греков, развитие знаний в Вавилоне, Китае, Египте. Вклад в развитие геометрии Евклида. Основные понятия планиметрии. Построение и измерение углов, действия над ними.
практическая работа, добавлен 29.01.2012Очерк возникновения и применения тригонометрических вычислений. Открытие фактической связи отрезков треугольника с окружностью. Анализ геометрического определения тригонометрических тождеств. Обзор решений дифференциальных и функциональных уравнений.
контрольная работа, добавлен 05.10.2013Развитие математического метода. Аксиомы и методы доказательства. Преобразование математики в период От Евклида до начала 19 в. Появление неевклидовой геометрии. Современная математика. Тесная взаимосвязь данной науки и реального физического мира.
реферат, добавлен 20.04.2010Понятие о тригонометрическом выражении. Тригонометрические функции и формулы тригонометрии, используемые для преобразования тригонометрических выражений. Знаки тригонометрических функций. Примеры решения задач с использованием формул преобразования.
презентация, добавлен 23.10.2013Греческая система счисления, основанная на использовании букв алфавита. Греческая тригонометрия и ее приложения в астрономии. Начало современной математики, достижения в алгебре. Создание дифференциального и интегрального исчислений, основные методы.
реферат, добавлен 07.04.2014Решение квадратных уравнений с параметром. Краткие сведения о жизни и деятельности Франсуа Виета. Разработка им тригонометрии и приложение ее к решению алгебраических уравнений. Введение буквенного исчисления, изучение не чисел, а действий над ними.
практическая работа, добавлен 05.12.2010