Усиление метода выделения переменных при решении логических уравнений за счет выбора функций для приведения из числа обновленных на предыдущих шагах и декомпозиции промежуточных результатов

Особенность модификации метода выделения переменных, уменьшающая сложность получаемых промежуточных форм за счет реализации выделения группы переменных последовательностью шагов, называемых циклами. Проведение исследования получения пустого множества.

Подобные документы

  • Булевы переменные: действительные и фиктивные. Сокращение или расширение количества переменных для логических функций удалением или введением фиктивных. Составление комбинационной таблицы. Числа с плавающей запятой. Функционирование системы управления.

    контрольная работа, добавлен 22.10.2013

  • Направления исследования функций многих переменных на безусловный экстремум, а также на условный экстремум. Методика определения координат точек функций, дифференцирование уравнений. Формирование, анализ и оценка соотношений математической связи.

    методичка, добавлен 08.09.2015

  • Вычисление минимума функции двух переменных, характеристика и особенности алгоритма метода Коши. Преимущества применения метода золотого сечения. Нахождение решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.

    лабораторная работа, добавлен 06.10.2022

  • Множество точек в пространстве. Изучение функции двух переменных и способов её задания в плоскости. Правила нахождения пределов для переменных. Сравнение бесконечно малых уравнений с разным количеством аргументов. Анализ свойств непрерывности функции.

    лекция, добавлен 26.01.2014

  • Экстремумы функций многих переменных. Необходимые и достаточные условия экстремума. Локальные и условные экстремумы. Метод множителей Лагранжа. Описание экстремумов функции переменных, формулировании необходимого и достаточного условия их существования.

    контрольная работа, добавлен 27.08.2010

  • Использование свойств показательной и логарифмической функций для решения уравнений и неравенств. Практическое применение метода введения новых переменных, подстановки и некоторых специальных методов для решения уравнений, систем уравнений и неравенств.

    реферат, добавлен 12.12.2013

  • Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.

    шпаргалка, добавлен 25.01.2016

  • Область определения функции нескольких переменных. Частные производные функций нескольких переменных. Дифференциал функции нескольких переменных. Скалярные и векторные поля. Производная по направлению. Градиент дифференцируемого скалярного поля.

    лекция, добавлен 29.09.2014

  • Предназначение и применение функции нескольких переменных. Сущность и характеристика дифференцируемой функции, значение дифференциала. Определение предела функции нескольких переменных, её непрерывность. Описание и использование точки поверхности.

    курсовая работа, добавлен 16.04.2015

  • Понятие множества, операции над ними. Основные элементарные функции, их графики. Односторонние пределы функции одной переменной. Бесконечно малые функции, их классификация. Непрерывность и дифференцируемость. Линии уровня и градиент функции переменных.

    учебное пособие, добавлен 10.12.2012

  • Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.

    лекция, добавлен 12.07.2015

  • Исследование процесса кратного интегрирования при дифференциальном исчислении функций. Определение частных производных функций двух переменных и установление их геометрического смысла. Анализ правил дифференцирования и табличных производных функции.

    курсовая работа, добавлен 26.05.2015

  • Основные понятия матрицы: элементы, линейные матричные операции. Условие совместности системы линейных уравнений. Метод последовательного исключения переменных Гаусса — применение и модификации, достоинства, устойчивость. Неоптимальность метода Крамера.

    презентация, добавлен 11.12.2013

  • Интерпретация функции двух переменных на основе понятий дифференциального исчисления. Частные производные и дифференциал. Понятие производной по направлению. Градиент функции трех переменных. Уравнение касательной плоскости и нормали к поверхности.

    реферат, добавлен 04.05.2015

  • Виды систем из p линейных алгебраических уравнений с n неизвестными переменными. Недостаток метода Крамера - трудоемкость вычисления определителей, когда число уравнений системы больше трех. Алгоритм исключения неизвестных переменных методом Гауса.

    курсовая работа, добавлен 26.02.2014

  • Введение дополнительных переменных. Разделение области возможных значений переменных и параметров. Вспомогательные преобразования, приводящие к упрощению выражений. Применение классических формул. Несколько примеров решения задач описанными методами.

    контрольная работа, добавлен 08.02.2011

  • Исчисление функций одной и нескольких переменных, его виды (дифференциальное, интегральное): правило Лопиталя, схема исследования функции и построения ее графика, скалярное поле, неопределенный интеграл. Кратные интегралы. Элементы теории векторных полей.

    контрольная работа, добавлен 17.06.2014

  • Решение системы линейных алгебраических уравнений (СЛАУ) четырьмя способами: с помощью формул Крамера; обратной матрицы; метода замещения (способом последовательных приближений) и классического метода Гаусса (последовательного исключения переменных).

    задача, добавлен 15.01.2014

  • Особенности свойств градиента, которые лежат в основе ряда итерационных методов минимизации функций. Сущность градиентного метода. Сходимость метода скорейшего спуска. Проблема отсутствия надежных критериев окончания счета с требуемой точностью.

    лекция, добавлен 06.09.2017

  • Особенности алгебры над множеством логических функций и переменных, сигнатура которой содержит две бинарные операции. Характеристика полиномома Жегалкина. Основные аспекты его поиска. Анализ основ использования метода неопределенных коэффициентов.

    реферат, добавлен 06.04.2015

  • Понятие дифференциала функции как суммы произведений частных производных этой функции на приращения соответствующих независимых переменных. Особенности и суть условия дифференцируемости функции нескольких переменных и его математическое представление.

    презентация, добавлен 17.09.2013

  • Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.

    курс лекций, добавлен 23.10.2013

  • Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.

    контрольная работа, добавлен 09.04.2016

  • Рассмотрение основных свойств функций алгебры логики. Базис и основные законы булевых функций. Реализация сочетательного закона при использовании логической функции И для трех переменных. Конъюнктивная и дизъюнктивная формы закона поглощения переменных.

    лекция, добавлен 15.11.2017

  • Предложены способы выделения корреляционных плеяд при анализе матрицы коэффициентов корреляции. Разработаны алгоритм выделения плеяд, проверки корректности выделения плеяд признаков, методика анализа состава плеяд и оценки информативности признаков.

    статья, добавлен 11.06.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.