Функции нескольких переменных

Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.

Подобные документы

  • Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.

    курс лекций, добавлен 23.10.2013

  • Область определения функции нескольких переменных. Частные производные функций нескольких переменных. Дифференциал функции нескольких переменных. Скалярные и векторные поля. Производная по направлению. Градиент дифференцируемого скалярного поля.

    лекция, добавлен 29.09.2014

  • Предназначение и применение функции нескольких переменных. Сущность и характеристика дифференцируемой функции, значение дифференциала. Определение предела функции нескольких переменных, её непрерывность. Описание и использование точки поверхности.

    курсовая работа, добавлен 16.04.2015

  • Понятие дифференциала функции как суммы произведений частных производных этой функции на приращения соответствующих независимых переменных. Особенности и суть условия дифференцируемости функции нескольких переменных и его математическое представление.

    презентация, добавлен 17.09.2013

  • Частные производные функции нескольких переменных. Градиент функции, касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных. Метод множителей Лагранжа. Решение задач нелинейного программирования с двумя переменными.

    учебное пособие, добавлен 17.04.2013

  • Особенности декартовой системы координат в трехмерном пространстве. Понятие предела, непрерывность функции нескольких переменных. Свойства функций непрерывных в ограниченной замкнутой области. Определение частной производной функции нескольких аргументов.

    контрольная работа, добавлен 29.05.2015

  • Вычисление минимума функции двух переменных, характеристика и особенности алгоритма метода Коши. Преимущества применения метода золотого сечения. Нахождение решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.

    лабораторная работа, добавлен 06.10.2022

  • Интерпретация функции двух переменных на основе понятий дифференциального исчисления. Частные производные и дифференциал. Понятие производной по направлению. Градиент функции трех переменных. Уравнение касательной плоскости и нормали к поверхности.

    реферат, добавлен 04.05.2015

  • Дифференцируемость и полный дифференциал в точке. Главная линейная часть и её приращение. Геометрический смысл дифференциала функции нескольких переменных. Производные сложной и неявной функции. Производная в данном направлении и градиент функции.

    лекция, добавлен 07.07.2015

  • Исследование процесса кратного интегрирования при дифференциальном исчислении функций. Определение частных производных функций двух переменных и установление их геометрического смысла. Анализ правил дифференцирования и табличных производных функции.

    курсовая работа, добавлен 26.05.2015

  • Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.

    контрольная работа, добавлен 09.04.2016

  • Общие сведения о прямых методах безусловной оптимизации. Виды многомерной оптимизации: методы нулевого, первого и второго порядка. Достаточные условия экстремума, функции безусловного экстремума. Необходимые условия экстремума различных переменных.

    презентация, добавлен 07.07.2015

  • Предел функции как величина, к которой стремится рассматриваемая функция при стремлении её аргумента к данной точке. Понятие функции нескольких переменных, вводимое для изучения подобных зависимостей. Область определения и непрерывность функции.

    эссе, добавлен 18.10.2013

  • Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.

    методичка, добавлен 19.09.2017

  • Понятие множества, операции над ними. Основные элементарные функции, их графики. Односторонние пределы функции одной переменной. Бесконечно малые функции, их классификация. Непрерывность и дифференцируемость. Линии уровня и градиент функции переменных.

    учебное пособие, добавлен 10.12.2012

  • Описание функций одной и многих переменных, исследование задач на максимум и минимум - локальных свойств функции. Использование высших производных. Необходимые условия и достаточные дифференциальные признаки экстремума. Понятие условного экстремума.

    курсовая работа, добавлен 08.09.2010

  • Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.

    лекция, добавлен 12.07.2015

  • Характеристика главных способов задания функции: табличная, аналитическая. Сущность области определения и предел функции двух переменных. Основные правила нахождения пределов. Непрерывность функции двух переменных, описание свойств и определений.

    лекция, добавлен 29.09.2013

  • Множество точек в пространстве. Изучение функции двух переменных и способов её задания в плоскости. Правила нахождения пределов для переменных. Сравнение бесконечно малых уравнений с разным количеством аргументов. Анализ свойств непрерывности функции.

    лекция, добавлен 26.01.2014

  • Характеристика методики аналитического нахождения минимального значения функции через необходимое и достаточное условие экстремума. Реализация алгоритма поиска минимального значения функции методом градиентного спуска на языке программирования С++.

    курсовая работа, добавлен 28.10.2017

  • Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.

    реферат, добавлен 03.10.2012

  • Исчисление функций одной и нескольких переменных, его виды (дифференциальное, интегральное): правило Лопиталя, схема исследования функции и построения ее графика, скалярное поле, неопределенный интеграл. Кратные интегралы. Элементы теории векторных полей.

    контрольная работа, добавлен 17.06.2014

  • Понятие о функции двух переменных. Понятие и содержание линии уровня функции, порядок ее нахождения. Предел и его свойства. Непрерывность и дифференцируемость функции двух переменных. Частные производные. Методика определения дифференциала и градиента.

    контрольная работа, добавлен 20.09.2011

  • Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.

    презентация, добавлен 29.09.2017

  • Доказательство теоремы Ферма с использованием метода замены переменных в уравнениях, применение которого доказывает, что теорема не имеет решения в целых положительных числах, а требует применение дробных чисел в одном или нескольких своих переменных.

    творческая работа, добавлен 12.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.