Введение в вычислительную математику
Нахождение погрешности на примере арифметических операций и вычисления значений функции. Постановка задачи и применение интерполирования путем разбора интерполяционной схемы Эйткена, интерполяционной формулы Гаусса, многочлена Лагранжа, Ньютона и Эрмита.
Подобные документы
Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
контрольная работа, добавлен 10.01.2012Интерполяция как процесс нахождения многочлена не выше n-ой степени, ее содержание и предъявляемые требования, основные этапы и значение. Особенности интерполяционной формулы Лагранжа и Ньютона. Остаточный член интерполяции, методика его нахождения.
лекция, добавлен 08.09.2013Интерполирование как один из способов приближения функций. Интерполяционная формула Лагранжа. Формула Ньютона. Пример нахождения приближенного значения по интерполяционной формуле Лагранжа, Ньютона для значения заданного аргумента. Код программы Паскаль.
контрольная работа, добавлен 21.10.2017Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.
презентация, добавлен 18.09.2013Построение интерполяционной функции, удовлетворяющей поставленному условию. Характеристика определителя Вандермонда. Подставление переменной в функцию при известных заданных коэффициентах. Рассмотрение интерполяционных многочленов Лагранжа и Ньютона.
презентация, добавлен 30.10.2013- 6. Интерполяция
Интерполяционная формула Лагранжа. Определение производных функции. Оценка остаточного члена. Исчисление корня уравнения с помощью обратного интерполирования. Построение интерполяционного многочлена Ньютона. Сущность вычислительных методов алгебры.
контрольная работа, добавлен 23.04.2011 Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.
контрольная работа, добавлен 23.04.2011Рассмотрение понятия интерполяции и ее практического применения. Нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений. Экстраполирование функции с использованием первой и второй интерполяционных формул Ньютона.
реферат, добавлен 23.12.2014Анализ подхода, основанного на приближении таблично заданной функции с помощью алгебраического интерполяционного многочлена Лагранжа. Построения формулы для вычисления второй производной с использованием аппроксимации. Метод неопределенных коэффициентов.
презентация, добавлен 30.10.2013Анализ линейно независимых функций, основные условия выполнения интерполяции для поиска многочлена, оценка возможной погрешности. Сущность методов Лагранжа и Ньютона, понятие интерполяционного полинома. Квадратическая зависимость аппроксимирующей функции.
лабораторная работа, добавлен 20.05.2015Интерполяционные полиномы Ньютона для равных и неравных интервалов. Сравнение интерполяционных полиномов Лагранжа и Ньютона. Порядок вычисления конечных разностей. Определение эффективного уровня интерполяционного полинома для аппроксимации функции.
лабораторная работа, добавлен 06.11.2021Рассмотрение задачи приближения периодических функций составными двухточечными многочленами Эрмита, представление этих многочленов, использующих значения функции и ее производных в точке. Связь двухточечных многочленов Эрмита и многочлена Тейлора.
статья, добавлен 12.08.2020Абсолютная и относительная погрешности, понятия значащих цифр приближенного числа. Оценка остаточного члена интерполяционного многочлена Лагранжа. Сущность разностной аппроксимации задачи Коши, описание правила Рунге практической оценки погрешности.
учебное пособие, добавлен 25.01.2019Функция Гаусса как плотность распределения вероятности случайной величины, являющаяся математическим показателем. Применение таблицы значений функции Лапласа для нахождения нормального распределения. Определение интегральной формулы Муавра-Лапласа.
доклад, добавлен 10.02.2014Сущность интерполяции, понятие разделенных и конечных разностей. Интерполяционная формула Лагранжа и Ньютона, вывод формулы Ньютона через разделенные разности и ее применение для равностоящих узлов интерполяции. Биноминальные многочлены. Теорема Polya.
курсовая работа, добавлен 15.06.2011Эксперимент по нахождению экстремума методом крутого восхождения. Движение по градиенту – "крутое восхождение". Уточнение максимального значения функции отклика с помощью плана второго порядка. Нахождение интерполяционной функции (уравнения регрессии).
курсовая работа, добавлен 31.05.2016Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Исследование разновидности ошибок, возникающих при постановке математической задачи. Изучение основных этапов построения аппроксимирующей функции по эмпирической формуле. Линейная и квадратичная зависимость координат. Очерк интерполяционной кривой.
презентация, добавлен 30.10.2013Определение предела функции для бесконечно большой последовательности значений аргумента. Проколотая окрестность точки и ограничение функции. Произведение арифметических операций, имеющих предел. Вычисления замечательных пределов и дуги окружности.
лекция, добавлен 26.01.2014Основные понятия приближённых вычислений. Учёт погрешности в арифметических действиях. Применение модифицированного метода Ньютона для вычисления систем нелинейных уравнений. Сущность методики Эйлера-Коши с последовательной итерационной обработкой.
учебное пособие, добавлен 14.01.2017Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.
лекция, добавлен 26.09.2017Постановка задачи аппроксимации и интерполяции функций. Общее понятие обобщенной степени и конечных разностей. Интерполяционные формулы Ньютона. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов для обработки результатов экспериментов.
контрольная работа, добавлен 27.09.2017Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.
учебное пособие, добавлен 18.09.2012Исследование интерполирования функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции. Полиноминальная интерполяция. Интерполяционный полином Лагранжа. Представление гладкой функции.
курсовая работа, добавлен 22.04.2011Получение формулы численного дифференцирования при помощи первого интерполяционного многочлена Ньютона. Построение формул численного дифференцирования и аппроксимации функции. Построение интерполяционного многочлена первой степени. Теорема Больцано-Коши.
контрольная работа, добавлен 22.12.2014