Основные свойства числовых рядов

Изучение теории рядов и применения их для решения различного типа задач. Составление последовательности частичных сумм порядка. Анализ интегрального признака Коши и интегрирования дифференциальных уравнений. Определение радиуса сходимости степенной цепи.

Подобные документы

  • Понятие бесконечных сумм, история их исследования с древних времен до сегодня. Определение числового ряда и сходимости. Основные свойства числовых рядов. Достаточные условия сходимости числового ряда: признак сравнения, Даламбера, интегральный Коши.

    контрольная работа, добавлен 24.06.2011

  • Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.

    курсовая работа, добавлен 09.07.2015

  • Основные понятия числовых рядов и их важные свойства. Необходимый признак сходимости числового ряда. Установление сходимости и расходимости ряда помощью достаточных признаков. Интегральный признак Коши. Абсолютная и условная сходимость числовых рядов.

    презентация, добавлен 20.12.2015

  • Приближенное решение определенного интеграла от непрерывной функции, расчет погрешностей. Способы решения дифференциальных уравнений. Абсолютная и условная сходимость числовых и степенных рядов. Интервал, свойства и радиус сходимости степенного ряда.

    контрольная работа, добавлен 06.06.2015

  • Теоретический обзор числовых рядов: их определение и сходимость. Основные свойства числовых рядов: признаки сходимости и расходимости. Характеристика знакочередующихся и знакопеременных рядов. Признак сходимости Лейбница. Ряды с положительными членами.

    методичка, добавлен 02.07.2014

  • Особенность понятия и видов числовых рядов. Основная характеристика необходимых и достаточных признаков сходимости. Теоретические аспекты радикального и интегрального примет Коши. Проведение исследования знакочередующихся и знакопеременных цепей.

    курсовая работа, добавлен 18.05.2017

  • Определения, понятия и элементарные свойства сходящихся числовых рядов. Необходимое условие и достаточные признаки сходимости знакоположительного ряда. Признаки сравнения; признаки Даламбера, Коши. Исследование знакопеременных рядов; теорема Лейбница.

    курс лекций, добавлен 30.07.2017

  • Принцип Даламбера для рядов и двойных интегралов. Расчет радиуса сходимости степенного ряда. Задача Коши для дифференциальных уравнений. Линейная алгебра и аналитическая геометрия. Обратная матрица системы уравнений с использованием формулы Крамера.

    контрольная работа, добавлен 26.02.2012

  • Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.

    курсовая работа, добавлен 04.12.2018

  • Понятие числовых рядов и их свойства. Ряды с неотрицательными членами. Признаки Даламбера и Коши. Знакопеременные ряды. Свойства абсолютно сходящихся рядов. Функциональные последовательности, их графики. Функциональные и степенные ряды, их сходимость.

    лекция, добавлен 10.12.2011

  • Понятие сходимости числового ряда. Сходимость положительных рядов. Признак Даламбера с использованием нижнего и верхнего предела. Объединённый признак Даламбера, радикальный признак Коши. Перестановки числовых рядов. Теорема об универсальных рядах.

    контрольная работа, добавлен 26.12.2011

  • Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.

    дипломная работа, добавлен 06.03.2016

  • Нахождение частных производных, градиента и эластичности функции, исследование ее на экстремум. Вычисление зависимости величины банковской ставки от срока вклада, интервала сходимости степенных рядов. Решение дифференциальных уравнений и задачи Коши.

    контрольная работа, добавлен 07.03.2015

  • Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.

    статья, добавлен 26.10.2010

  • Некоторые сведения о последовательностях. Понятия, свойства числовых, функциональных, знакопеременных, степенных рядов. Признаки их сходимости: сравнения, Даламбера, Коши, Лейбница. Теорема Абеля. Разложение основных элементарных функций в степенные ряды.

    курс лекций, добавлен 22.06.2014

  • Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.

    методичка, добавлен 06.08.2015

  • Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.

    статья, добавлен 31.05.2013

  • Коши Луи (1789-1857 гг.) - знаменитый французский математик. Изучение теории дифференциальных уравнений. Комплексные пространства со скалярным произведением. Определение предела математической последовательности. Множества в Евклидовом Пространстве.

    реферат, добавлен 06.10.2017

  • Исследование сходимости рядов по признаку сходимости Даламбера. Определение интеграла с точностью до 0,001 путем предварительного разложения подинтегральной функции в ряд и почленного интегрирования этого ряда. Определение функции Лапласа.

    контрольная работа, добавлен 18.03.2014

  • Способ определения радиуса сходимости степенного ряда. Остаточный член формулы Тейлора, записанный в форме Лагранжа. Простое достаточное условие разложимости функции в ряд Тейлора. Дифференцирование степенных рядов для нахождения сумм некоторых рядов.

    курсовая работа, добавлен 23.04.2011

  • Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.

    учебное пособие, добавлен 16.05.2010

  • Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.

    курсовая работа, добавлен 25.11.2013

  • Основные этапы и закономерности решения дифференциальных уравнений. Порядок построения гармонического ряда и его анализ. Почленное интегрирование заданных значений по признаку сходимости Коши. Отличительные черты собственного и несобственного интеграла.

    контрольная работа, добавлен 29.03.2018

  • Исследование на сходимость числового ряда из абсолютных величин по признаку сравнения. Определение радиуса и интервала сходимости степенного ряда по признаку Даламбера в предельной форме. Разложение в окрестности точки в степенной ряд заданной функции.

    контрольная работа, добавлен 29.01.2015

  • Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.

    курсовая работа, добавлен 13.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.