Функциональные пространства и их применение в математике и физике

Основные концепции функциональных пространств, их структуру и важные результаты в функциональном анализе. Введение в основные понятия и определения, рассмотрение ключевых классов функциональных пространств, таких как банаховы и гильбертовы пространства.

Подобные документы

  • Связь функциональных операторов с ретрактами и пространствами Дугунджи. Классификация функциональных операторов. Пространства частичных отображений и пространства решений дифференциальных уравнений. Теорема Дугунджи для пространства с фильтрациями.

    статья, добавлен 19.10.2016

  • Понятие гильбертовых пространств аналитических функций. Доказательство теоремы о том, что открытый или единичный круг, квадратично интегрируемых аналитических функций в области D является гильбертовым пространством. Определение пространства Харди.

    реферат, добавлен 06.11.2017

  • Неравенства Гельдера и Минковского. Декартово произведение метрических пространств. Пространства непрерывных и непрерывно дифференцируемых функций. Принцип сжимающих отображений. Линейные нормированные пространства. Полнота метрических пространств.

    учебное пособие, добавлен 08.12.2013

  • Описание построения некоторых функциональных пространств дифференцируемых функций многих переменных и построенных весовых пространств. Построение усредняющей функции и основного тождества. Нахождение вектора с целыми неотрицательными координатами.

    статья, добавлен 21.06.2018

  • Полные и неполные матричные пространства. Сжимающие отражения и неподвижные точки. Основные операторы в функциональных пространствах. Общий вид линейного функционала. Умножение и дифференцирование обобщенных функций. Преобразование Фурье в пространстве.

    учебное пособие, добавлен 18.06.2015

  • Понятия сходимости и аппроксимации. Топологические векторные пространства, банаховы пространства. База окрестности в точке. Теория двойственности, нормирование пространства. Теорема Крейна-Шмульяна. Понятие о топологии, порожденной семейством множеств.

    методичка, добавлен 08.09.2015

  • Доказательство изооморфности векторных пространств. Отображение для всевозможных наборов чисел. Линейные, нулевые и тождественные преобразования. Однозначное соответствие между матрицами и всеми линейными преобразованиями векторного пространства.

    лекция, добавлен 30.04.2014

  • Линейные ограниченные операторы в банаховых пространствах. Векторные пространства над полем. Изоморфизмом векторных пространств и оператор умножения на функцию. Основные свойства линейности интеграла. Решение сопряженного однородного уравнения.

    реферат, добавлен 20.02.2018

  • Определение топологического пространства. Основные этапы развития топологии. Классическое определение непрерывности числовой функции в точке, восходящее к Коши. Задачи и виды топологии. Суть аксиомы Колмогорова. Отображения топологических пространств.

    реферат, добавлен 06.03.2010

  • Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.

    учебное пособие, добавлен 13.02.2016

  • Изучение структуры пространств модулярных форм, содержащих мультипликативные эта-произведения с единичным характером. Нахождение размерности и базиса пространств модулярных форм по формуле Коэна-Остерле, поведение функций в параболических вершинах.

    статья, добавлен 31.05.2013

  • Проведение исследования бинарной и унарной алгебраических операций на множестве. Особенность формализации нечеткой информации для построения математических моделей. Характеристика аксиом меры нечеткости. Основные виды метрик функциональных пространств.

    лабораторная работа, добавлен 06.10.2017

  • Анализ способов определения скалярного произведения. Характеристика ортогональных векторов. Линейный оператор как обобщение линейной числовой функции на случай более общего множества аргументов и значений. Знакомство с примерами евклидовых пространств.

    контрольная работа, добавлен 12.11.2013

  • Топологическое пространство как основной объект изучения топологии, его содержание и основные категории измерения. Этапы становления и развития топологии как научного направления. Влияние аксиом отделимости на свойства топологических пространств.

    реферат, добавлен 24.12.2010

  • Функция Юнга и ее свойства. Пространство Орлича и норма Амемии. Полнота пространства Орлича. Критерии сходимости и фундаментальности последовательности функций. Привлечение нетривиальных сведений из выпуклого анализа. Теория нормированных пространств.

    статья, добавлен 26.04.2019

  • Определение аффинных преобразований пространства, их основные свойства. Основные доказательства теорем про аффинные преобразования. Характеристика родства пространства: его определение, свойства (корректность определения направления родства и пр.).

    реферат, добавлен 23.11.2016

  • Рассмотрены пространственные структуры на примере математики и в приложениях к модальной логике пространства. многозначность понятия "пространства". На примере анализа структуры топологического пространства вводится понятие близости между частями целого.

    статья, добавлен 27.04.2023

  • Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.

    курсовая работа, добавлен 13.03.2013

  • Определение понятия "функциональное уравнение". Методы решения функциональных уравнений и их систем. Роль и актуальность изучения функциональных уравнений в школьном курсе математики. Разработка сборника задач для использования математическими классами.

    курсовая работа, добавлен 20.05.2017

  • Пространства Гурвица и их стратификация. Рассмотрение шестиреберных рисунков рода три с единственной вершиной. Разложения перестановки в произведение перестановок. Перестановки фиксированной вырожденности. Производящие ряды обобщенных чисел Гурвица.

    диссертация, добавлен 28.12.2016

  • Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.

    книга, добавлен 19.05.2011

  • Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.

    курсовая работа, добавлен 04.11.2012

  • Роль функциональных моделей в теории оператора. Совокупность гильбертовых пространств и операторов. Характеристическая функция узла. Минимальная J-унитарная дилатация. Ортопроекторы на подпространства Харди, отвечающие верхней и нижней полуплоскости.

    статья, добавлен 30.10.2016

  • Различные числовые ряды в математике. Рассмотрение убывающей геометрической прогрессии. Числовые интервалы в функциональных рядах. Математическое доказательство теоремы Абеля. Область сходимости степенного ряда. Интервал с центром в начале координат.

    лекция, добавлен 05.05.2015

  • Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.

    курсовая работа, добавлен 22.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.