Случайные события
Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.
Подобные документы
Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
учебное пособие, добавлен 16.02.2014Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.
контрольная работа, добавлен 17.04.2015Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.
учебное пособие, добавлен 23.02.2011Расчет вероятности отказа с помощью формулы Бернулли. Теоремы сложения и умножения вероятностей. Классическое и геометрическое определение вероятности. Изменения порядка интегрирования. Определение объема тела, заданного ограничивающими его поверхностями.
контрольная работа, добавлен 24.01.2012Теорема сложения вероятностей совместных событий, формула полной вероятности. Вероятность появления хотя бы одного события. Локальная и интегральная теоремы Лапласа, формула Бернулли. Условные вероятности, аксиомы теории вероятностей и формула Бейеса.
курсовая работа, добавлен 11.06.2020Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.
контрольная работа, добавлен 01.04.2016Сущность события как элементарного множества пространства элементарных исходов. Характеристика основных видов: достоверный, невозможный. Классическое определение вероятности и понятие "классической схемы". Применение формулы Байеса и схема Бернулли.
лекция, добавлен 29.10.2013Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.
контрольная работа, добавлен 25.01.2015Пространство элементарных событий. Случайное событие как результат опыта. Классическое и аксиоматическое определение его вероятности. Основные формулы комбинаторики. Независимые и зависимые явления. Априорные вероятности гипотез. Формула Байеса.
презентация, добавлен 29.09.2017События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.
курсовая работа, добавлен 21.11.2012Операции над событиями. Частость наступления события. Аксиоматика теории вероятности. Построение вероятностного пространства. Классическое определение вероятности. Обоснование формулы условной вероятности в общем случае. Формула сложения вероятностей.
реферат, добавлен 27.11.2015Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.
курсовая работа, добавлен 19.10.2014Случайные события и предмет теории вероятностей. Классическое определение вероятности. Исследование понятия "элементарный исход". Три основные вида комбинации событий. Наглядный пример вероятностной модели? Аксиоматический метод А.Н. Колмогорова.
презентация, добавлен 11.11.2022Расчет вероятности своевременного прибытия автобусов. Применение теорем умножения вероятностей независимых событий и сложения вероятностей несовместимых событий. Применение формулы полной вероятности при определении вероятности дефекта укупорки банки.
контрольная работа, добавлен 26.05.2015Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.
контрольная работа, добавлен 27.11.2017Формулы комбинаторики и вероятность. Классическое определение вероятности. Непрерывные и дискретные случайные величины. Закон распределения случайных дискретных величин, их числовые характеристики. Статистические методы обработки экспериментальных данных.
учебное пособие, добавлен 29.09.2017Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.
методичка, добавлен 05.09.2012Предмет и задачи теории вероятностей. Вероятности случайных событий, классический и геометрический способы их вычисления. Значения вероятности произвольного события. Гипотезы и независимые события. Последовательность независимых испытаний. Схема Бернулли.
курс лекций, добавлен 21.12.2011Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.
реферат, добавлен 12.12.2013Порядок расчета вероятностей событий с использованием классической формулы. Процесс решение задач для выражения события В через все события А. Определение вероятности того что взятая деталь окажется стандартной. Использование формулы Бейеса и Пуассона.
контрольная работа, добавлен 13.02.2013Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.
лекция, добавлен 25.01.2013Расчет вероятности события. Понятие элементарных событий, их несовместимость. Использование правила умножения. Поиск вероятности выхода прибора из строя. Теорема о произведении и сложении вероятностей для независимых событий. Расчет количества событий.
контрольная работа, добавлен 05.11.2016Методы оценки влияния различных случайных факторов на рассматриваемые явления. Изучение пространства элементарных событий. Построение математической теории вероятностей. Расчет гипотезной формулы Бейеса. Определение суммы и производных двух событий.
лекция, добавлен 18.03.2014