Физические иллюзии на примере уравнений Максвелла
Парадоксы и противоречия, порождаемые электромагнитной теорией Максвелла при моделировании распространения электромагнитных волн. Критерий истинности отдельных уравнений. Математические уравнения моделирования электродинамических процессов в вакууме.
Подобные документы
Моделирование электромагнитных процессов в токоведущих элементах сети комплексов графитации. Методика частотной адаптации формулировок рекуррентных уравнений Максвелла постоянного тока для переменного тока. Применение freeware программного обеспечения.
статья, добавлен 29.08.2016Математические уравнения как основное средство познания при моделировании физических явлений и строения окружающего мира, их классификация и типы. Понятие диофантового анализа уравнений и принципы его реализации, варианты решения при использовании.
реферат, добавлен 22.04.2016Совершенствование методики изучения уравнений как моделей реальных процессов. Теоретические основы математического моделирования, его виды и классификация. Уравнения как математические модели реальных ситуаций. Анализ учебников алгебры 5-9 классов.
дипломная работа, добавлен 05.07.2014Уравнение движения распространения сейсмических SH волн с учетом поглощения энергии, обусловленной коэффициентом межкомпонентного трения. Определение переменных коэффициентов дифференциального уравнения. Исследование системы интегральных уравнений.
контрольная работа, добавлен 13.06.2015Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.
презентация, добавлен 06.12.2011Определение иррациональных уравнений и их математические модели. Измерение отрезков в неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Равносильные уравнения и их следствия. Методы решения иррациональных уравнений.
реферат, добавлен 29.10.2010- 7. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.
дипломная работа, добавлен 27.02.2020 Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.
курсовая работа, добавлен 27.03.2011Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.
реферат, добавлен 09.02.2017Многообразие парадоксов и их причины (парадоксы Греллинга и Бери). Парадоксы как петли (литографии К. Эшера). Абстракции и иерархические языки. Парадоксы, связанные с теорией множеств, открытия Кантора и парадокс Рассела, кризис основ математики.
реферат, добавлен 29.03.2009Изучение эволюции уравнений и их решений. Теории вычислений Древнего Египта, способы решения квадратных уравнений в Древнем Вавилоне и арабских странах. Кубические уравнения Греции, формула Тартальи–Кардано. Методы решения уравнений высоких степеней.
курсовая работа, добавлен 22.05.2010Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.
практическая работа, добавлен 22.10.2019Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений
реферат, добавлен 26.02.2010Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.
методичка, добавлен 03.03.2012Рассмотрение численного решения нелинейного уравнения, описывающего распространения нелинейных волн в двухфазных континуумах. Построение системы линейных алгебраических уравнений и решение данной задачи с использованием метода конечных разностей.
статья, добавлен 27.09.2012Частные случаи уравнений плоскости. Сущность параметрического и канонического уравнения, взаимное расположение прямых. Нормальное уравнение плоскости, специальные виды уравнений. Решение уравнений с направляющим вектором. Пример общего уравнения прямой.
презентация, добавлен 21.09.2017Описание биологических обществ с помощью дифференциальных уравнений. Химическая кинетика и выражение химических реакций с помощью так называемых стехиометрических уравнений. Дифференциальные уравнения в медицине на примере математической модели эпидемии.
курсовая работа, добавлен 13.12.2016Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.
курсовая работа, добавлен 04.11.2012Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.
доклад, добавлен 29.04.2021Решение дифференциальных уравнений с разветвляющимися переменными. Определение и решение однородных дифференциальных уравнений и уравнений в полных дифференциалах. Решение линейных дифференциальных уравнений первого порядка и уравнений Бернулли.
лекция, добавлен 14.03.2014Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.
презентация, добавлен 30.10.2013- 23. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.
курсовая работа, добавлен 19.01.2016Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.
методичка, добавлен 27.04.2016