Глубокое обучение и его применение сегодня
Сущность глубокого обучения, его применение в компьютерном зрении, обработке естественного языка, распознавании речи, автономных транспортных средствах. Архитектура ГО: гибкие, сверточные и рекуррентные нейронные сети, стохастический градиентный спуск.
Подобные документы
Итерационный метод нахождения локального экстремума (минимума и максимума) функции с помощью движения вдоль градиента. Тестирование стандартного стохастического градиентного спуска как популярного алгоритма для широкого спектра моделей машинного обучения.
курсовая работа, добавлен 12.02.2018Создание модели по определению вопросительной интонации в разговорной речи как примере шумных данных. Признаки, используемые при распознавании. Программные инструменты обработки аудиофайлов. Рекуррентные нейронные сети долгосрочно–краткосрочной памяти.
дипломная работа, добавлен 23.09.2018Рассматриваются алгоритмы обучения нейронной сети: градиентный спуск с постоянным шагом и метод сопряженных градиентов (алгоритм Флетчера-Ривса). Расчет значения минимизируемой целевой функции ошибки полученной на тестовой выборке после обучения.
статья, добавлен 29.04.2018Локальность при обработке информации, как важный принцип, по которому строятся биологические нейронные сети. Метод обучения Хэбба. Сеть с линейным поощрением. Дискретный градационный сигнал с двумя возможными значениями. Задача и алгоритмы классификации.
презентация, добавлен 16.10.2013Роль глубокого обучения в создании программного обеспечения deepfake, угрозы конфиденциальности и безопасности. Возможности реализованных в нём алгоритмов создания поддельных изображений, синтезированных искусственным интеллектом, методы их обнаружения.
статья, добавлен 09.05.2022Сетевые устройства - терминалы, которые соединяют в едином информационном пространстве гаджеты, используемые в повседневной деятельности. Расширенное машинное обучение, глубокие нейронные сети - основа создания автономных интеллектуальных систем.
контрольная работа, добавлен 15.03.2019История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017Основные понятия и существующие алгоритмы машинного обучения, особенности их применения в информационных системах. Подходы к обработке естественного языка. Вызовы и ограничения применения машинного обучения в информационных системах, его перспективы.
курсовая работа, добавлен 20.05.2023Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Метод градиентного спуска. Решение задач оптимизации. Геометрическая интерпретация метода градиентного спуска с постоянным шагом. Критерии остановки процесса приближенного нахождения минимума. Выбор оптимального шага. Градиентный метод с дроблением шага.
реферат, добавлен 17.07.2013Рассмотрение проблемы создания органических компьютеров, построенных из живых нейронов, с помощью которых сегодня появляется возможность спроектировать новые поколения вычислительных устройств. Нейронные сети как способ решения сложнейших задач.
статья, добавлен 26.04.2019- 12. Нейронные сети
Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.
реферат, добавлен 15.03.2009 Параметризация свёрточной нейронной сети для осуществления семантического анализа текста и определения его эмоциональной окраски. Архитектура сети, её обучение и тестирование с использованием объектно-ориентированного языка Python и библиотеки Keras.
статья, добавлен 19.02.2019Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.
статья, добавлен 17.07.2013Сверточная нейронная сеть как тип искусственной нейронной сети с прямой связью. Знакомство с историей и концепцией развития сверточных нейронных сетей. Характеристика результатов программного эксперимента в виде графиков и сгенерированных изображений.
статья, добавлен 30.06.2020Назначение графических управляющих элементов NNTool, подготовка данных, создание нейронной сети, обучение и прогон. Разделение линейно-неотделимых множеств. Задача аппроксимации. Распознавание образов. Импорт-экспорт данных. Применение нейронных сетей.
статья, добавлен 23.01.2014Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.
учебное пособие, добавлен 18.01.2014История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.
курсовая работа, добавлен 16.12.2016Нейронные сети как аппаратные или программные средства, моделирующие работу человеческого мозга. Анализ проблем создания компьютерных систем речевого общения. Рассмотрение особенностей применения нейронных сетей для решения задач распознавания речи.
доклад, добавлен 12.12.2012Программный комплекс Matlab - идеальная среда для моделирования физических явлений, инженерных и экономических систем. Нейронные сети - компьютерная архитектура, инспирированная биологическими нервными системами. Инструменты работы с базами данных.
контрольная работа, добавлен 24.02.2021Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.
дипломная работа, добавлен 19.11.2015- 22. Нейронные сети
Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.
реферат, добавлен 20.02.2009 Компьютерная обработка текста и человеческой речи. Многообразие глаголов в тезаурусах языков. Множество наиболее распространенных в речи глаголов для английского языка. Сетевая система глаголов. Процедура тотального картирования памяти нейронной сети.
статья, добавлен 08.02.2013- 24. Нейронные сети
Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.
реферат, добавлен 29.12.2011 Особенности применения инновационных инструментов прогнозирования. В качестве основного метода, используемого для прогнозирования, применяются искусственные нейронные сети Хопфилда, представляющие собой нейронные сети на основе радиально-базисных функций.
статья, добавлен 15.12.2021