Числа. От действительных чисел к натуральным и далее

Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.

Подобные документы

  • Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.

    лекция, добавлен 22.12.2013

  • Ознакомление с историей возникновения и областью применения цепных дробей. Изучение приближения действительных чисел (рациональных дробей с заданным ограничением для знаменателей, бесконечной последовательности рациональных чисел, наилучших приближений).

    курсовая работа, добавлен 01.07.2014

  • Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.

    учебное пособие, добавлен 16.06.2015

  • Методы представления рациональных чисел цепными дробями и представления действительных иррациональных чисел правильными бесконечными цепными дробями. Способы оценки погрешности при замене действительного числа его подходящей дробью. Теорема Дирихле.

    курсовая работа, добавлен 25.10.2011

  • Характеристика причин возникновения дробей. Анализ единичных, систематических и дробей общего вида. Описание особенностей записи дробных чисел в Древнем Египте, Вавилоне, в Древней Греции и Риме, на Руси. Изучение старинных задач с дробными числами.

    презентация, добавлен 11.05.2015

  • Исторический аспект происхождения дробей в разных странах: Древнем Египте, Греции, Индии, Китае, Риме. Понятия, свойства рациональных и нерациональных чисел. Формирование понятия доли и дроби в вариантных программах обучения математике.

    курсовая работа, добавлен 14.11.2014

  • Определение цепных дробей, их свойства и примеры. Представление действительных чисел цепными дробями общего вида. Золотое сечение – гармоническая пропорция, история данного понятия. Расчёт его числа при помощи ряда Фибоначчи и с помощью цепных дробей.

    реферат, добавлен 07.11.2011

  • Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.

    реферат, добавлен 27.03.2015

  • Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.

    реферат, добавлен 25.12.2014

  • Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.

    реферат, добавлен 08.02.2017

  • История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.

    реферат, добавлен 21.03.2013

  • Число, как основное понятие математики. Начало тождественности, принцип формы неопределенной двоицы. Абстрактное отношение величины к другой величине и аксиоматическое построение математической теории. Функции чисел и характеристика количества предметов.

    реферат, добавлен 05.10.2015

  • Этапы разработки системы исчисления в Древней Греции, создание дробей в Египте и Вавилоне. Обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование в течение XVII века. Геометрическое истолкование комплексных чисел.

    реферат, добавлен 21.11.2010

  • Рассмотрение множества действительных чисел. Свойства пределов, связанные с арифметическими операциями. Изображение действительных чисел бесконечными десятичными дробями. Пределы последовательности и граница функции, их показатели и точки разрывов.

    курс лекций, добавлен 13.01.2014

  • Определение сущности числа, история его происхождения. Основные функции количественных натуральных числовых единиц. Система записи чисел в Древнем Риме и Вавилоне. Рассмотрение особенностей счета у народа майя. Славянские цифровые знаки-буквы с титлами.

    презентация, добавлен 19.01.2015

  • Закон сохранения количества чисел джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Изоморфные свойства рядов четных и нечетных чисел натурального ряда. Определение простоты произвольного целого числа и факторизация.

    учебное пособие, добавлен 15.09.2012

  • Роль числа в познании и конституировании мира. Число как основное понятие математики. Понятие натурального числа. Число как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере, соразмерного и гармоничного.

    доклад, добавлен 11.01.2012

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.

    курсовая работа, добавлен 18.05.2016

  • Понятие и содержание числа, этапы его эволюции. Вычислительная техника вавилонян и египтян, их отличия. Пифагор и его школа, учения о числе. Периоды развития математики. Системы счисления в Древней Греции. Способ наименования больших чисел Архимеда.

    шпаргалка, добавлен 22.01.2011

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • Краткий исторический очерк, возникновение и развитие чисел. Поле алгебраических чисел, их суть и значение. Понятие числового поля, алгебраическое число. Рациональные приближения алгебраических чисел. Теорема Лиувиля, трансцендентные числа Лиувиля.

    реферат, добавлен 08.06.2010

  • История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.

    контрольная работа, добавлен 22.01.2011

  • История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.

    реферат, добавлен 17.06.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.