Применение кластеризации ситуаций в эвристических алгоритмах для задач дискретной оптимизации

Модификация модели вычислений, представляющей собой незавершенный метод ветвей и границ. Разработка подхода к формированию метрик на множестве подзадач в различных задачах дискретной оптимизации. Закономерности реализации эвристических алгоритмов.

Подобные документы

  • Применение вариантов эвристических алгоритмов. Недетерминированный конечный автомат. Варианты минимизации недетерминированных конечных автоматов и используемые эвристики. Алгоритм кластеризации ситуаций. Инициализация списка подзадач одним элементом.

    статья, добавлен 14.07.2016

  • Понятие о графе, способы его задания. Достижимость и обратная достижимость вершин графа. Графовые модели для оптимизации транспортных сетей и потоков, решения задач календарного планирования, задач о назначениях и других задач дискретной оптимизации.

    курсовая работа, добавлен 21.12.2011

  • Биологические принципы поведения муравьиной колонии, история создания соответствующих алгоритмов и особенности их использования. Этапы решения задачи при помощи муравьиных алгоритмов, оценка их достоинств и недостатков в решении задачи оптимизации.

    контрольная работа, добавлен 08.01.2014

  • Направления исследований в дискретной математике, направления их реализации и анализ результатов. Виды теорем и способы их доказательства: цепочка заключения, от противного, метод переборов и математической индукции, комбинированное доказательство.

    контрольная работа, добавлен 23.02.2013

  • Методологические принципы и алгоритмы оптимизации в ракурсе инженерного подхода. Модели задач оптимизации. Методы классического математического анализа исследования функций. Экстремумы функции одной и многих переменных. Метод множителей Лагранжа.

    контрольная работа, добавлен 20.01.2015

  • Использование метода ветвей и границ для решения задач длительного планирования, содержащих конечное число допустимых планов. Вычисление допустимых планов и проверка планов на оптимальность. Этапы построения формальной схемы метода ветвей и границ.

    лекция, добавлен 14.08.2017

  • Рассмотрение задач векторной оптимизации при векторном критерии и при обобщенном функционале, соответствующем векторному критерию. Решение задач векторной оптимизации статики нелинейных объектов. Применение типовых методов синтеза оптимальных управлений.

    лекция, добавлен 23.07.2015

  • Построение математических моделей оптимизации формы внешних и внутренних границ термоупругих тел. Зависимость температурных и механических полей от их формы. Разработка алгоритма и комплекса программ для оптимизации формы в задачах теплопроводности.

    автореферат, добавлен 02.03.2018

  • Проблема сложности вычислений как одна из важнейших проблем в дискретной математики. Множества и основные операции над ними. Основные законы операций над множествами. Прямые произведения и функции. Теорема Кантора. Матричный способ задания множеств.

    реферат, добавлен 16.05.2012

  • Освоение решения типовой задачи оптимизации поисковым методом. Анализ и модификация метода решения реальной задачи оптимизации на основе конкретной научной публикации. Процесс исследования и минимизация функции. Блок-схема поискового метода Хука-Дживса.

    курсовая работа, добавлен 20.11.2011

  • Возможности применения производной при решении задач на оптимизацию в школьном курсе математики. Формулировка и численные методы решения задач одномерной оптимизации по заданным алгоритмам. Разработка модели факультативного урока по математике.

    курсовая работа, добавлен 26.10.2010

  • Пространство состояний системы. Модель дискретной управляемой системы. Задачи оптимизации многошаговых процессов в дискретных системах. Определение минимизирующей последовательности. Построение траектории управляемых процессов. Задача Больца и Лагранджа.

    презентация, добавлен 21.08.2015

  • Рассмотрение математических закономерностей, лежащих в основе теории оптимизации. Изучение ряда содержательных и формализованных задач оптимизации. Определение этапов инженерного проектирования. Анализ процесса построения математической модели системы.

    контрольная работа, добавлен 01.04.2020

  • Основы классической теории сводимости задач и геометрического подхода к изучению их сложности. Понятие конусного и многогранного разбиения, афинной сводимости задач комбинаторной оптимизации. Примеры труднорешаемых и полиномиально разрешимых задач.

    диссертация, добавлен 10.01.2012

  • Решение задачи целочисленного линейного программирования симплекс-методом ветвей и границ. Составление оптимального плана выпуска продукции предприятия. Определение необходимого количества изделий с целью получения максимальной прибыли от их реализации.

    задача, добавлен 28.03.2020

  • Неориентированный граф задачи коммивояжера. Метод ветвей и границ: понятие, особенности применения. Практический пример реализации метода. Нахождение легчайшего простого основного ориентированного цикла в полном взвешенном графе на четырех вершинах.

    курсовая работа, добавлен 11.12.2012

  • Рассмотрение особенностей развития математического обучения и его влияния на систему обучения дискретной математики. Сравнительный анализ влияния выбора направления развития дискретной математики. Внедрение разработок в развитие математического обучения.

    статья, добавлен 11.10.2024

  • Знакомство с задачей распределения работ между преподавателями кафедры. Общая характеристика функциональной модели, построенной на базе методологии SADT. Рассмотрение основных методов и особенностей многокритериальной оптимизации и эвристических процедур.

    статья, добавлен 22.08.2020

  • Изложение основ классической теории сводимости задач и геометрического подхода к изучению их сложности. Изучение комбинаторно-геометрических свойств задач и геометрической интерпретации алгоритмов. Исследование свойств конусного разбиения пространства.

    диссертация, добавлен 28.12.2013

  • Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.

    статья, добавлен 02.02.2019

  • Описание математической модели, представляющей собой описание какого-либо объекта или процесса, выполненное на математическом языке с помощью геометрических фигур, уравнений, соотношений. Метод моделирования на уроках математики, его компоненты.

    статья, добавлен 27.01.2021

  • Приводятся аналитические выражения для автоматического вычисления весовых коэффициентов важности. Рассматривается задача аппроксимации области эффективности в многокритериальных задачах оптимизации при использовании логического критерия оптимальности.

    статья, добавлен 29.06.2017

  • Разработка метода вычислений для параллельного логического вывода на знаниях, представленных формулами исчисления предикатов первого порядка. Модификация формальной системы. Методы вычислений на подстановках с учетом параллельности логического вывода.

    статья, добавлен 18.01.2018

  • Постановка задачи одномерной безусловной оптимизации. Алгоритм пассивного и активного поиска минимума. Методы поиска, основанные на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.

    диссертация, добавлен 19.06.2015

  • Классическая постановка задачи оптимизации. Стандартные методы решения. Численные методы оптимизации. Применение моделей оптимизации. Особенности, связанные с применением аналитических методов оптимизации. Алгоритм аналитической оптимизации функций.

    реферат, добавлен 13.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.