Сравнительный анализ двух подходов при решении задачи классификации

Краткий обзор методов классификации, особенности их использование при проведении специализированных медицинских обследований. Применение дискриминантного анализа для выявления разницы между выборками. Специфика организации и топологии нейронных сетей.

Подобные документы

  • Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.

    дипломная работа, добавлен 10.12.2019

  • Особенности применения искусственных нейронных сетей для решения задачи классификации уровня формирования. Анализ решения задачи автоматической классификации уровня формирования по данным об идентифицированных объектах на электронной карте местности.

    статья, добавлен 02.04.2019

  • Применение нейронных сетей в банковской сфере с использованием Keras и Python. Улучшение процессов принятия решений в классификации и прогнозировании рисков. Методы, используемые для обучения и тестирования моделей, результатов их анализа и интерпретации.

    статья, добавлен 15.10.2024

  • Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.

    реферат, добавлен 09.06.2016

  • Рассмотрение проблемы классификации сообществ в социальной сети. Применение рекуррентных и сверточных нейронных сетей для классификации групп пользователей по степени радикальности. Методы предварительной обработки данных для построения классификаторов.

    статья, добавлен 21.05.2021

  • Анализ решения задачи дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Основные процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей.

    статья, добавлен 01.03.2017

  • Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.

    методичка, добавлен 03.07.2017

  • Понятия, определения нейронных сетей и классификации изображений. Методы оптимизации работы нейронной сети. Описание интерфейса программной реализации решения задачи классификации изображений. Решение задачи распознания изображений реальных объектов базы.

    дипломная работа, добавлен 06.06.2015

  • Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.

    статья, добавлен 26.04.2017

  • Топологическая модель быстрой нейронной сети. Применение гибридных быстрого дискретного вейвлет-преобразования для построения систем классификации сигналов. Структурный синтез быстрых нейронных сетей. Модели и концепции эволюционной кибернетики.

    статья, добавлен 29.05.2017

  • Рассмотрение методов прогнозирования нейронных сетей. Решение задачи обзора методов оконного прогнозирования на объеме страховых взносов. Изучение методов одношагового, многошагового прогнозирования. Применение метода окон для генерации обучающей выборки.

    статья, добавлен 24.03.2018

  • Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.

    статья, добавлен 02.04.2019

  • Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.

    дипломная работа, добавлен 26.05.2018

  • Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.

    курсовая работа, добавлен 16.05.2016

  • Применение методов классификации, моделирования и прогнозирования, основанных на применении деревьев решений, искусственных нейронных сетей, генетических алгоритмов, эволюционного программирования. Задачи и возможности Data Miner в Statistica 8.

    реферат, добавлен 19.12.2014

  • Разработка интеллектуальных систем, основанных на знаниях нейросетевых и нейрокомпьютерных технологий. Использование нейронных сетей при решении предоставления кредита в современном банке. Создание экспертных систем и организация ассоциативной памяти.

    контрольная работа, добавлен 29.11.2015

  • Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.

    дипломная работа, добавлен 28.08.2020

  • Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.

    дипломная работа, добавлен 14.12.2019

  • Понятие и классификации компьютерных сетей. Объекты информационных сетевых технологий. Топологии вычислительных сетей. Устройства для их соединения их между собой, каналы связи ВС. Назначение сервера, функции протоколов. Отличие Internet от других сетей.

    контрольная работа, добавлен 21.11.2021

  • Основные теории искусственных нейронных сетей. Место нейронных сетей в эволюции интеллектуальных систем управления. Преимущества применения нейроинформационных технологий при решении многих как нетрадиционных, так и традиционных задач управления и связи.

    книга, добавлен 09.09.2012

  • Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.

    статья, добавлен 29.07.2018

  • Методика разработки состязательных атак, которые основаны на словах и показывают возможность и силу изменения предсказываемого класса нейросети. Анализ особенностей применения регрессионных значений Шепли для интерпретации глубоких нейронных сетей.

    дипломная работа, добавлен 28.11.2019

  • Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.

    лекция, добавлен 26.09.2017

  • Понятие искусственного интеллекта, его роль в распознавании образов и решении задач классификации, оптимизации и прогнозировании. Анализ областей применения нейронных сетей: банки и страховые компании, военная промышленность и аэронавтика, биомедицина.

    контрольная работа, добавлен 21.03.2017

  • Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.

    статья, добавлен 26.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.