Интеграл и его применение
Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.
Подобные документы
Понятие первообразной от функции. Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Задачи о нахождении площади плоской фигуры. Несобственный интеграл.
лекция, добавлен 12.04.2012Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Нахождение площади плоской фигуры. Существование определённого интеграла. Дифференциальные уравнения.
контрольная работа, добавлен 30.01.2012Виды интегралов тригонометрических функций. Особенности вычисления их величины при помощи выполнения универсальной тригонометрической подстановки. Определение интегралов с помощью формул, преобразующих произведение тригонометрических функций в сумму.
презентация, добавлен 18.09.2013Сущность понятия "несобственные интегралы". Формула Ньютона-Лейбница. Нарушение первого и второго условия. Сходящийся и расходящийся интеграл. Несобственный интеграл с бесконечными пределами. Интегралы от неограниченных функций, признак сравнения.
лекция, добавлен 29.09.2017Несобственный интеграл с бесконечными пределами интегрирования, его вычисление. Признаки сравнения несобственных интегралов от неограниченных функций. Следствие аксиомы о сходимости интеграла с большей подынтегральной функцией, исследование примеров.
презентация, добавлен 25.09.2017Изложение теории математического анализа. Обзор тем курса: предел функции; основы дифференциального исчисления; исследование функции и построение графика; функции двух переменных; неопределённый и определённый интегралы; дифференциальные уравнения; ряды.
методичка, добавлен 22.10.2014Определение и характерные свойства интеграла, история развития соответствующего исчисления. Криволинейная трапеция, методика ее построения и анализа. Свойства определенного интеграла, направления его применения. Исследование набора стандартных картинок.
курсовая работа, добавлен 12.11.2014Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.
презентация, добавлен 24.09.2019Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.
курсовая работа, добавлен 09.10.2014Пределы функции, её исследование. Неопределенный и определенный, несобственный интеграл, его практическое применение. Числовые и степенные ряды, сходимость, признак Даламбера, принцип Лейбница. Функции нескольких переменных, дифференциальные уравнения.
контрольная работа, добавлен 06.08.2015Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Простейшие рациональные дроби и их интегрирование. Интегралы от иррациональных функций.
лекция, добавлен 25.06.2021Определение несобственного интеграла с бесконечными пределами. Оценка признаков сравнения функций. Мера ограниченной замкнутой области. Интегралы от неограниченных функций. Интегрирование неравенств фигуры и точки. Изучение свойств двойного интеграла.
лекция, добавлен 17.01.2014Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.
лекция, добавлен 17.01.2014Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010Определение первообразной функции. Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям. Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.
контрольная работа, добавлен 05.04.2021Определённый интеграл - одно из основных понятий математического анализа. Первообразная, формула Ньютона-Лейбница. Сущность понятия, свойства определенного интеграла. Скорость прямолинейного движения тела. Примеры решения задач с определенным интегралом.
презентация, добавлен 20.01.2022Неопределённый интеграл как совокупность всех первообразных данной функции. Основные приемы вычисления. Интегрирование дробно-рациональных и тригонометрических функций. Независимость от вида переменной. Интегрирование, содержащий квадратный трехчлен.
презентация, добавлен 30.01.2015- 19. Интегралы и ряды
Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.
методичка, добавлен 06.08.2015 Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 09.03.2015Основы линейной, векторной алгебры, аналитической геометрии и математического анализа. Криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления.
курс лекций, добавлен 19.11.2014Систематизация и закрепление основных знаний учащихся о первообразной, интеграле и дифференциале. Роль Лейбница, Бернулли и Ньютона в становлении интегрального исчисления. Сущность процесса интегрирования. Применение интеграла в различных областях науки.
презентация, добавлен 23.06.2013Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.
контрольная работа, добавлен 01.03.2017Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.
учебное пособие, добавлен 08.09.2011Изучение разделов линейной и векторной алгебры, аналитической геометрии, основ математического анализа и операционного исчисления. Рассмотрение примеров решения двойных, тройных, криволинейных и поверхностных интегралов, дифференциальных уравнений.
учебное пособие, добавлен 12.02.2016