Расчёт аппроксимаций экспериментальных данных методом наименьших квадратов посредством программных средств MatLAB
Определение понятия "аппроксимация", сущность и особенности метода аппроксимации при анализе, обобщении и использовании эмпирических результатов. Получение эмпирических формул методом наименьших квадратов. Расчёт аппроксимаций экспериментальных данных.
Подобные документы
Методика построения аппроксимирующей функции, которая наилучшим образом сглаживает экспериментальную зависимость, заданной таблично. Замена громоздкого табличного способа представления данных эксперимента как одна из важнейших задач аппроксимации.
лабораторная работа, добавлен 05.09.2022Метод наименьших квадратов: сущность и основное содержание, особенности использования в решении задачи нахождения одной результирующей прямой и анализе экспериментальных результатов на принадлежность нескольким прямым. Оценка эффективности метода.
доклад, добавлен 07.08.2013Рассмотрение сущности метода наименьших квадратов и линейной парной регрессии. Вывод формул для нахождения коэффициентов линейной парной регрессии. Аппроксимация функций с помощью метода наименьших квадратов. Нахождение параметров линейной функции.
курсовая работа, добавлен 26.02.2020Сущность и история разработки метода наименьших квадратов. Примеры решения уравнений в матричном виде по способу наименьших квадратов. Свойства оценок на основе метода наименьших квадратов. Парная линейная и нелинейная регрессия, методы их оценивания.
реферат, добавлен 26.04.2015Анализ данных о потребительских расходах на душу населения. Расчёт среднего коэффициента эластичности. Оценка ошибки аппроксимации. Построение таблицы распределения Фишера. Поиск значения общей площади вторичного жилья методом наименьших квадратов.
контрольная работа, добавлен 07.04.2016Основные понятия и методы, используемые при обработке экспериментальных исследований. Классификация систематических погрешностей по причине возникновения. Идея метода наименьших квадратов. Случаи линейной, пропорциональной и нелинейной зависимостей.
учебное пособие, добавлен 11.03.2014Целесообразность использования статистических методов в проблеме поиска оптимальных условий проведения эксперимента. Наука планирования и организации эксперимента. Обработка экспериментальных данных методом наименьших квадратов, регрессионная зависимость.
дипломная работа, добавлен 10.02.2016Правила проведения количественного анализа. Расчёт неизвестных величин по результатам измерений, содержащих случайные ошибки. Оценка отклонения точки от прямой. Основной принцип метода наименьших квадратов. Построение градуировки в спектрофотометрии.
презентация, добавлен 29.05.2020Характеристика метода наименьших квадратов. Краткая информация о двухшаговом и трёхшаговом методах наименьших квадратов. Парная линейная регрессия и системы одновременных уравнений. Автокорреляция остатков как важная проблема при оценивании регрессии.
контрольная работа, добавлен 09.07.2011Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.
контрольная работа, добавлен 20.06.2012Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
контрольная работа, добавлен 19.05.2015Характеристика метода наименьших квадратов, применяемого для оценки неизвестных параметров регрессионных моделей по выборочным данным, основанного на минимизации суммы квадратов остатков регрессии. Пример его использования в случае линейной зависимости.
реферат, добавлен 20.05.2013Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.
учебное пособие, добавлен 24.10.2012Примеры корреляционной и прямолинейной зависимостей. Линейная регрессия и метод наименьших квадратов. Пояснение к оценке коэффициентов методом наименьших квадратов. Выборочный коэффициент корреляции. Построение модели, описывающей изменения величин.
практическая работа, добавлен 28.03.2020Сущность и содержание метода наименьших квадратов, свойства оценок на его основе. Парная линейная регрессия. Системы одновременных уравнений, направления ее исследования и порядок решения. Авторегрессионное преобразование. Применение МНК в экономике.
курсовая работа, добавлен 15.05.2013Развитие методов регуляризации решения систем линейных уравнения (СЛАУ). Предложение модифицированного метода наименьших квадратов решения СЛАУ, в основе которого лежит использование q-дифференцирования. Выполнение задач в математическом пакете Matlab.
статья, добавлен 27.07.2017Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.
контрольная работа, добавлен 11.04.2015Использование метода наименьших квадратов для отыскания приближенных зависимостей между изучаемыми экспериментальными величинами. Решение уравнений в матричном виде. Нахождение интервальных оценок неизвестных параметров и доверительного интервала.
курсовая работа, добавлен 05.05.2014Рассмотрение метода взвешенных наименьших квадратов. Исследование случая парной регрессии. Нарушение гомоскедастичности и наличие автокорреляции остатков. Уравнение регрессии без свободного члена. Дисперсия результативного признака и остаточных величин.
презентация, добавлен 13.07.2015Вектор оценок параметров регрессионного уравнения. Классическая оценка ковариационной матрицы метода наименьших квадратов, оценка параметров. Разработка программного обеспечения. Дисперсия ошибки. Однородные группы наблюдений, формула Стерджесса.
статья, добавлен 02.02.2019Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.
презентация, добавлен 06.08.2015Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.
статья, добавлен 02.02.2019Ортогональное вращение Гивенса и преобразование Хаусхолдера. Последовательность нахождения сингулярного разложения матриц. Описание числа обусловленности. Нормы в пространстве векторов и матриц. Использование разложения в методе наименьших квадратов.
дипломная работа, добавлен 26.02.2020Сущность статистических прогнозов и задачи экономико-статистического прогнозирования. Основные методы прогнозирования в статистике: наименьших квадратов, наименьших квадратов с весами, экспоненциального сглаживания, авторегрессии. Построение прогноза.
реферат, добавлен 08.05.2011Математическое моделирование, форма и принципы представления моделей и особенности их представления. Компьютерное моделирование при обработке опытных данных, типы интерполяции. Этапы алгоритма сглаживания опытных данных методом наименьших квадратов.
курс лекций, добавлен 19.06.2015