Устойчивость в случае нейтральности линейного приближения
Линеаризация как основной прием изучения устойчивости особой точки системы обыкновенных дифференциальных уравнений. Устойчивая, нейтральная и неустойчивая линеаризация. Способ отыскания инвариантных лучей системы. Построение линейной функции Ляпунова.
Подобные документы
- 1. Нелинейная свободная система второго порядка, описываемая обыкновенным дифференциальным уравнением
Представление исходной нелинейной свободной системы второго порядка в виде системы дифференциальных уравнений первого порядка и ее линеаризация. Изучение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.
курсовая работа, добавлен 22.05.2012 Определение и особенности нелинейных систем. Методы фазовых портретов и гармонической линеаризации. Исследование вибрационной помехоустойчивости систем управления. Устойчивость нелинейных систем, метод Ляпунова. Критерий абсолютной устойчивости Попова.
реферат, добавлен 22.07.2015Рассмотрение свойств особой (неподвижной) точки типа ротор в двумерных неавтономных диссипативных вещественных системах обыкновенных дифференциальных уравнений. Исследование механизма перехода к хаосу в многомерных системах дифференциальных уравнений.
статья, добавлен 15.05.2021Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Анализ систем сингулярно возмущенных обыкновенных дифференциальных уравнений. Рассмотрение системы сингулярно возмущенных обыкновенных дифференциальных уравнений с аналитическими функциями в комплексной области. Области притяжения вырожденной системы.
статья, добавлен 11.11.2018Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.
курсовая работа, добавлен 22.04.2011Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015Методика определения максимального показателя Ляпунова решений системы дифференциальных уравнений. Анализ основных условий, которые гарантируют экспоненциальную устойчивость системы для любых нелинейных характеристик, лежащих в допустимых пределах.
статья, добавлен 30.10.2016Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.
курсовая работа, добавлен 26.11.2014Оценка результатов прямых измерений с однократными наблюдениями. Рассмотрение логарифмической функции правдоподобия. Линеаризация нелинейных уравнений методом последовательных приближений. Наличие корреляционной связи между погрешностями аргументов.
реферат, добавлен 08.07.2014Математическое моделирование реального объекта в виде дифференциального уравнения линейного инерционного звена и передаточной функции. Операторно-структурное описание сигнала. Построение переходной характеристики устойчивого звена первого порядка.
реферат, добавлен 13.01.2014Система двух функционально-дифференциальных уравнений общего вида. Достаточные условия разрешимости периодической краевой задачи для этой системы в случае резонанса. Периодическая краевая задача для системы функционально-дифференциальных уравнений.
статья, добавлен 26.04.2019- 13. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
доклад, добавлен 09.10.2012 Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.
статья, добавлен 30.10.2016Точка покоя системы двух нелинейных обыкновенных дифференциальных уравнений первого порядка. Исследование устойчивости стационарных состояний системы уравнений. Анализ рисунков фазовых портретов соответствующей динамической системы в программе Maple.
статья, добавлен 16.05.2016Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.
презентация, добавлен 30.10.2013Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. Их геометрическая интерпретация. Устойчивость решения автономной системы и линейных дифференциальных уравнений с постоянными коэффициентами. Простейшие типы точек покоя.
контрольная работа, добавлен 22.01.2016Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.
статья, добавлен 27.05.2018История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.
учебное пособие, добавлен 30.09.2014Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
статья, добавлен 03.03.2018Исследование нелинейной модели гидравлической системы в динамическом режиме. Линеаризация дифференциального уравнения, описывающего динамику изменения значения уровня жидкости в первой и второй емкостях. Определение материального баланса в статике.
курсовая работа, добавлен 11.11.2016Разработка программы для определения устойчивости линейной стационарной системы при помощи алгебраического критерия устойчивости Гурвица. Анализ линейной стационарной динамической системы на устойчивость. Код программы, основные этапы ее работы.
курсовая работа, добавлен 10.05.2017Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.
доклад, добавлен 29.04.2021