Крайова задача Рімана і сингулярні інтегральні рівняння з кусково-неперервними коефіцієнтами на спрямлюваних кривих
Розширення класів допустимих спрямлюваних кривих. Дослідження граничних властивостей інтегралу типу Коші з кусково-неперервною щільністю. Вплив функцій та кривої граничного спряження на розв'язок крайової задачі Рімана. Встановлення стійкості індексу.
Подобные документы
Поняття, означення й теорема про достатні умови існування і єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Випадки, коли рівняння можна проінтегрувати. Загальний метод введення параметра, неповні рівняння. Розв’язок задачі Коші.
реферат, добавлен 06.11.2017Розгляд фундаментального розв’язку задачі Коші. Параболічні системи типу Шилова із залежними від просторової змінної молодшими коефіцієнтами. Дослідження властивостей параболічних рівнянь із змінними коефіцієнтами обмеженої гладкості та невід’ємним родом.
статья, добавлен 25.08.2016Вивчення поняття інтегралу Рімана та умов його існування. Визначення властивостей інтеграла Рімана. Класи інтегрованих функцій. Розгляд інтегралу Стілтьєса. Суми Дарбу-Стілтьєса та їх властивості. Граничний перехід під знаком інтеграла Стілтьєса.
курсовая работа, добавлен 16.04.2014Побудова точного аналітичного розв'язку алгоритмічного характеру гіперболічної крайової задачі математичної фізики в обмеженому кусково-однорідному просторовому середовищі. Використання методу головних зв'язків (функцій впливу та функції Гріна).
статья, добавлен 04.02.2017- 5. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженнями і особливостями
Розв’язність першої крайової задачі, односторонньої крайової задачі та задачі Коші. Розв’язність задачі Діріхле, задачі з косою похідною та односторонньої крайової задачі для еліптичних рівнянь другого порядку з будь-якими степеневими особливостями.
автореферат, добавлен 28.08.2014 Вивчення фундаментального розв'язку задачі Коші. Дослідження диференціальних властивостей, граничної поведінки та одержання оцінок у різних нормах потенціалів. Встановлення коректної розв'язності задачі Коші в широких класах функціональних просторів.
автореферат, добавлен 10.01.2014- 7. Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
статья, добавлен 25.03.2016 - 8. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженнями і особливостями
Розв’язок задачі Діріхле та задачі з косою похідною для еліптичних рівнянь другого порядку. Вирішення крайової задачі та задачі Коші для параболічного рівняння. Побудова оптимального керування системами, що описуються параболічною крайовою задачею.
автореферат, добавлен 28.12.2015 Умови порушення єдиності розв’язку задачі Діріхле з комплексними матричними коефіцієнтами в просторах гладких функцій з поліноміальним ростом на нескінченності для диференціального рівняння другого порядку. Принципи однозначної розв’язності задачі Коші.
автореферат, добавлен 24.07.2014Розгляд питання про побудову головного члена двофазового асимптотичного солітоноподібного розв'язку задачі Коші для сингулярно збуреного рівняння Кортевега-де Фріза зі змінними коефіцієнтами у загальному випадку. Опис множини початкових значень.
статья, добавлен 04.02.2017Застосування методу Рімана-Гільберта при вивченні початкових задач. Дослідження загальної спектральної задачі для сумісних рівнянь пари Лакса. Вивчення властивостей узагальнених матричних функцій. Проведення аналізу аналітичної структури матриць стрибку.
автореферат, добавлен 20.07.2015Задачі Коші в класах початкових умов, які є узагальненими функціями з просторів і дослідженню властивостей фундаментального розв’язку. Простори основних та узагальнених функцій і властивості перетворення Фур’є, згорток, згортувачів та мультиплікаторів.
автореферат, добавлен 30.07.2014Розробка коректного розв'язку двоточкової крайової задачі про відшукання періодичного розв'язку параболічного рівняння вищого порядку з імпульсною дією. Методика постановки задачі Коші для параболічного псевдодиференціального рівняння вищого порядку.
автореферат, добавлен 26.08.2015Побудова аналітичного розв’язку методом гібридних інтегральних перетворень. Вирішення гіперболічних крайових задач математичної фізики через зображення. Дослідження компонентів зв’язності кусково-однорідного середовища. Розгляд диференціальних операторів.
статья, добавлен 25.08.2016Дослідження особливостей розв’язання задачі Коші для параболічного рівняння з імпульсним впливом. Основні поняття p-адичного аналізу. Властивості розв’язку задачі Коші над полем. Формули диференціювання теплових потенціалів виразів, на основі лем.
статья, добавлен 25.03.2016Вивчення поведінки на нескінченності періодичних по змінних, крім однієї, розв’язків задачі Діріхле в напівпросторі для еліптичного рівняння з періодичними коефіцієнтами високого порядку. Третя крайова задача для еліптичного рівняння другого порядку.
автореферат, добавлен 15.11.2013Побудування розв’язку у просторі узагальнених функцій однорідної задачі Рімана для півплощини в особливому випадку. Доведення теорем його існування та єдиності. Отримання інтегрального зображення в смузі. Запропонування підходу до побудови розв’язків.
автореферат, добавлен 27.08.2014Дослідження специфічних властивостей оператора Бесселя нескінченного порядку в класах основних функцій. Аналіз методики відшукання усіх початкових даних задачі Коші, при яких відповідь має ті ж властивості гладкості, що і фундаментальний розв’язок.
автореферат, добавлен 30.08.2014Поняття звичайного диференціального рівняння, існування та єдність його розв'язку. Метод ламаних Ейлера. Наближене розв'язання диференціального рівняння І порядку. Загальний розв'язок рівняння у'=у+3 і задача Коші для рівняння з початковою умовою: у(0)=1.
контрольная работа, добавлен 06.10.2010З’ясування розв'язку задачі Коші. Розгляд параболічного за Петровським рівняння довільного порядку. Наявність членів з лінійно зростаючими на нескінченності коефіцієнтами. Відсутність залежності від просторових змінних. Застосування перетворення Фур'є.
статья, добавлен 25.08.2016Методи розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. Властивості розв’язку однорідних рівнянь методом Ейлера та матричним. Задача Коші: частинний розв’язок неоднорідних систем, що задовольняє нульовій початковій умові.
контрольная работа, добавлен 08.11.2017Методика дослідження властивостей фундаментальних розв'язків і фундаментальних матриць розв'язків для параболічних псевдодиференціальних рівнянь і систем. Теорія коректної розв'язності задачі Коші для таких рівнянь і систем у просторах Гельфанда й Шилова.
автореферат, добавлен 26.08.2015Одержання нових інтегральних оцінок точності методу перетворення Келі для наближення операторних експоненти і косинуса та доведення їх непокращуваності за порядком. Побудова нового методу дискретизації задачі Коші для неоднорідного рівняння 1-го порядку.
автореферат, добавлен 28.08.2014Основні поняття та означення диференціального рівняння першого порядку, теорема про достатні умови існування та єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Загальний метод введення параметра. Розв’язок неповних рівнянь.
контрольная работа, добавлен 13.04.2011Розв’язання задачі Коші у просторах узагальнених функцій типу. Достатні умови, які повинна задовольняти початкова узагальнена функція. Побудова теорії задачі Коші для еволюційних рівнянь з оператором Бесселя нескінченного порядку в класах початкових умов.
автореферат, добавлен 13.07.2014