Эвклидовы пространства
Анализ способов определения скалярного произведения. Характеристика ортогональных векторов. Линейный оператор как обобщение линейной числовой функции на случай более общего множества аргументов и значений. Знакомство с примерами евклидовых пространств.
Подобные документы
Анализ аналитического определения обобщенного скалярного произведения векторов в данном n-мерном (векторном) пространстве. Изучение эквивалентности аналитического и аксиоматического определения скалярного произведения и всех рассматриваемых пространств.
дипломная работа, добавлен 10.04.2015Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.
лекция, добавлен 26.01.2014Анализ особенностей ортогональных систем векторов. Знакомство с численными методами решения задач. Рассмотрение приемов ортогонализации столбцов матрицы. Характеристика способов применения методов ортогонализации к решению систем линейных уравнений.
курсовая работа, добавлен 13.07.2013Место Рене Декарта в истории математики. Научное описание прямоугольной системы координат в работе "Рассуждение о методе". Рассмотрение связи геометрии и алгебры с помощью скалярного произведения векторов и угла между ними в научных трудах Декарта.
статья, добавлен 27.01.2019Особенность выполнения различных операций с матрицами. Исследование скалярного и векторного произведения векторов. Применение матричных функций для решения задач линейной алгебры в MathCAD. Анализ однородных и неоднородных систем линейных уравнений.
презентация, добавлен 08.04.2018Функция как математическое понятие, отражающее однозначную парную связь элементов одного множества с элементами из другого множества. Топология пространства арифметических векторов. Компактные множество и линейные отображения. Теорема Кантора и Бореля.
методичка, добавлен 07.08.2015Линейные ограниченные операторы в банаховых пространствах. Векторные пространства над полем. Изоморфизмом векторных пространств и оператор умножения на функцию. Основные свойства линейности интеграла. Решение сопряженного однородного уравнения.
реферат, добавлен 20.02.2018Понятие системы координат в геометрии. Анализ примеров положительного и неположительного скалярного произведения векторов четырехмерного пространства. Псевдоевклидово пространство, особенности его движения. Кривые в псевдоевклидовом пространстве.
курс лекций, добавлен 01.09.2017Условия ортогональности линейного преобразования. Независимость ортонормированной системы векторов. Стандартное евклидово пространство и ортогональные матрицы. Геометрический смысл собственного преобразования А. Доказательства леммы. Индукция векторов.
лекция, добавлен 30.04.2014Сущность векторной алгебры. Изучение математических операций с векторами (сложение, умножение). Понятие векторного пространства и линейной зависимости векторов, необходимость коллинеарности и компланарности. Скалярное произведение векторов и координаты.
конспект урока, добавлен 16.01.2010Изучение геометрического смысла смешанного произведения нескольких некомпланарных векторов, лежащих в основании параллелепипеда. Доказательство равенства скалярного произведения, не зависящего от порядка множителей. Обзор свойств линейности равенства.
лекция, добавлен 29.09.2013Доказательство изооморфности векторных пространств. Отображение для всевозможных наборов чисел. Линейные, нулевые и тождественные преобразования. Однозначное соответствие между матрицами и всеми линейными преобразованиями векторного пространства.
лекция, добавлен 30.04.2014Исследование базиса и составление таблицы умножения для заданных векторов. Особенности и условия применения векторов в процессе доказательства алгебраических неравенств. Вычисление скалярного произведения заданных векторов, условия перпендикулярности.
реферат, добавлен 18.06.2015Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.
лекция, добавлен 21.09.2017- 15. Линейная алгебра
Понятие полукольца и кольца, векторного, евклидового и унитарного пространства. Рассмотрение различных видов линейных операторов: обратимых, симметрических, кососимметрических, нормальных, унитарных и ортогональных. Сопряженный и обратный операторы.
курсовая работа, добавлен 16.04.2012 Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.
контрольная работа, добавлен 16.06.2010- 17. Линейная алгебра
Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.
реферат, добавлен 30.05.2022 Неравенства Гельдера и Минковского. Декартово произведение метрических пространств. Пространства непрерывных и непрерывно дифференцируемых функций. Принцип сжимающих отображений. Линейные нормированные пространства. Полнота метрических пространств.
учебное пособие, добавлен 08.12.2013Евклидово пространство – линейное пространство с некоторым образом введенной операцией "скалярного произведения". Неравенство Коши–Буняковского. Ортогональные и ортонормированные системы векторов. Ортогональное дополнение к линейному подпространству.
контрольная работа, добавлен 01.07.2012Скалярное произведение векторов как число, равное сумме произведений соответствующих компонент этих векторов. Скалярное произведение товаров как их общая стоимость. Свойства скалярного произведения. Условие ортогональности. Неравенство Коши-Буняковского.
презентация, добавлен 21.09.2013Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.
книга, добавлен 23.11.2010Аксиомы линейного пространства. Операции сложения и умножения элемента на число. Линейная комбинация векторов с коэффициентами. Определение координат вектора относительно базиса. Разложение элемента по базису. Понятие линейной векторной зависимости.
лекция, добавлен 29.09.2013Векторное пространство как совокупность всех свободных векторов трёхмерного пространства. Евклидовое или гильбертовое пространство со скалярным произведением, определяемым в векторном исчислении. Понятие ортогональных и перпендикулярных векторов.
контрольная работа, добавлен 11.03.2011Изложение понятия и физического смысла скалярного и векторного произведения векторов в системе координат. Изучение и доказательства их свойств. Приведение некоторых метрических формул. Вычисление площади параллелограмма, построенного на векторах.
лекция, добавлен 26.01.2014Алгебраические системы, возникающие при формализации свойств коэффициентов сингулярной части операторного разложения произведений полей. Обобщение класса йордановых супералгебр. Анализ задачи о полярном разложении линейных операторов пространства.
отчет по практике, добавлен 28.10.2018