Інтерпретація обчислювальної геометрії плоских фігур у точковому численні

Теоретичні питання обчислювальної геометрії плоских фігур. Алгоритми конструювання криволінійних форм з урахуванням заданих характеристик та їх програмна реалізація. Методика конструювання плоских форм у просторі як основа геометричного моделювання.

Подобные документы

  • Основні методи геометричних побудувань: геометричного місця точок, перетворення, алгебраїчний. Використання методів конструктивної геометрії для побудови геометричних фігур за допомогою лінійки, циркуля, подвійної лінійки, гострого та прямого кутів.

    дипломная работа, добавлен 07.07.2011

  • Алгоритмічна реалізація методів формування та дослідження основних геометричних форм різних ступенів. Комп’ютерні засоби конструювання алгебраїчних багатовидів вищих порядків методами інциденцій. Криволінійна алгебраїчна поверхня заданого порядку.

    автореферат, добавлен 29.08.2015

  • Основні методи відображення формоутворюючих елементів простору – точок, прямих, площин, методи геометричного моделювання, а також складних фігур – багатогранників, кривих поверхонь. Методи розв’язання на графічних моделях метричних та позиційних задач.

    учебное пособие, добавлен 07.07.2017

  • Проблеми комплексного системного аналізу та впорядкування інструментальних засобів прикладної геометрії, формування її методологічних та організаційно-технічних принципів її розвитку. Методи геометричного моделювання, вдосконалення його можливостей.

    автореферат, добавлен 29.09.2014

  • Системний аналіз методів і підходів до процесу геометричного моделювання складних інженерних конструкцій. Принцип аналітичного конструювання складних каркасних геометричних моделей із простих каркасних геометричних моделей на базі теорії R-функцій.

    автореферат, добавлен 28.08.2014

  • Розвиток прикладної геометрії та системних методів її дослідження. Системне визначення, дослідження та систематизація властивостей методів геометричного моделювання. Арифметичні операції над методами. Операція використання спеціальних просторів.

    автореферат, добавлен 29.09.2015

  • Основи форміровапнія плоских фігур в тригонометрії. Зміст поняття зображення. Поняття трикутник і його складові. Побудова трикутника за допомогою проекції. Паралелепіпед і паралелограм і його составляюшіе. Побудова паралелепіпед і паралелограма.

    контрольная работа, добавлен 02.11.2008

  • Способи і методи геометричного моделювання формування спряжених поверхонь вищих кінематичних пар. Розробка алгоритмів і програм їхньої реалізації, які грунтуються на сучасних досягненнях прикладної та обчислювальної геометрії та комп'ютерної графіки.

    автореферат, добавлен 25.02.2014

  • Розробка геометричного алгоритму формування точкових каркасів квазіканалових поверхонь. Дослідження точності дискретного представлення плоских кривих із заданими диференціально-геометричними характеристиками і збіжності алгоритмів їх формування.

    автореферат, добавлен 12.07.2014

  • Розвиток геометричного моделювання криволінійних обводів різних об’єктів на основі заданого кубічного розподілу кривини та заданих значень кривини в граничних точках. Ділянка криволінійного обводу. Відсутність точок перегину кривини на ділянці.

    статья, добавлен 30.01.2016

  • Особливості прямокутної ізометричної, диметричної та аксонометричної косокутної проекцій ГОСТ 2.317-69. Основні методи побудови прямокутної ізометрії плоских (піраміди, призми, конуса, циліндра та сфери) та складних фігур (циліндра і сфери з вирізом).

    лекция, добавлен 30.03.2011

  • Характеристика визначеного інтеграла: означення та властивості; умови інтегрованості функції; формула Ньютона – Лейбніца; методи обчислення площ плоских фігур, довжини дуги плоскої кривої, об’єму і площі поверхні тіл обертання. Огляд невласних інтегралів.

    лекция, добавлен 30.04.2014

  • История изучения плоских кривых. Особенности формы кривой и способов ее образования. Классификация плоских кривых. Канонические уравнения эллипса, гиперболы и параболы, свойства кривых, изучаемые в 9–11 классах. Цели и задачи факультативных занятий.

    дипломная работа, добавлен 22.04.2011

  • Поняття про скалярні та векторні поля. Обчислення площ плоских фігур за допомогою криволінійного інтеграла другого роду. Властивості комплексних чисел і дії над ними. Розгляд теореми Гельмгольца і формули Остроградського-Гауса. Ізольовані особливі точки.

    учебное пособие, добавлен 24.06.2014

  • Системи лінійних рівнянь, їх визначники другого і третього порядків. Формула Ньютона-Лейбніца та обчислення площ плоских фігур в прямокутній системі координат. Основні правила диференціювання і похідні будь-яких елементарних функцій та вищих порядків.

    курс лекций, добавлен 14.12.2013

  • Алгебраїчні методи в геометрії, особливості та принципи їх реалізації, історія застосування. Загальна характеристика та відмінні особливості аналітичної геометрії Ферма та Декарта. Сторінка першого видання "Геометрії" Р. Декарта (1637), її зміст.

    реферат, добавлен 27.10.2014

  • Розробка методу дискретного геометричного моделювання плоских обводів другого порядку гладкості. Геометрична схема згущення просторової дискретно представленої кривої. Одержання обводу із монотонною зміною кривини та постійним напрямком скруту.

    статья, добавлен 28.10.2016

  • Понятие и отличительные признаки первообразной функции, требования к ней, характерные свойства, сферы применения. Нахождение площадей плоских фигур. Сущность определенного интеграла и порядок его нахождения, связь с задачей расчета площади плоских фигур.

    задача, добавлен 14.01.2012

  • Питання розпізнавання та морфологічного аналізу геометричних форм зображень проекційної природи. Конструктивні алгоритми ідентифікації зображень проекційної природи, на основі позиційних та метричних задач багатовимірної геометрії простору моделі.

    автореферат, добавлен 20.04.2014

  • Заміна площини проекцій. Перетворення прямих та площин загального положення в окреме положення (паралельне). Спосіб плоскопаралельного переміщення. Обертання навколо осей, перпендикулярних до площин проекцій. Визначення натуральних розмірів плоских фігур.

    курс лекций, добавлен 26.09.2017

  • Выявление методов нахождения площадей плоских фигур в зависимости от заданных условий. Выделение типологии задач на нахождение площадей и обоснование применения метода решения к ним. Разработка задачи прикладного характера и выполнение их решения.

    курсовая работа, добавлен 19.09.2018

  • Розробка методів геометричного моделювання оптимізаційного розміщення геометричних об'єктів. Поняття Ф-функції та її основні властивості. Аналітичні описи взаємодії фрагментів кривих 2-го порядку. Побудова фрагментів контуру дотику двох парабол.

    статья, добавлен 03.05.2019

  • Основные геометрические характеристики поперечных сечений бруса, определяющие сопротивление различным видам деформаций. Моменты инерции плоских фигур и сложных сечений. Моменты инерций относительно параллельных осей. Определение направления главных осей.

    конспект урока, добавлен 06.10.2016

  • Геометричні аспекти конструювання відбивальних систем. Алгоритми для розрахунку ВС. Функція, керуюча розподілом відбитих променів. Спосіб раціонального конструювання форми та розташування системи синусоїдальних відбивачів, перевірка їх коректності.

    автореферат, добавлен 28.07.2014

  • Розробка генеральних планів підприємств як одна зі сфер використання задач оптимізаційного розміщення плоских геометричних об’єктів з нелінійними границями. Дослідження ключових параметрів квадратичної форми, що описує фрагмент границі між вершинами.

    статья, добавлен 28.10.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.