Геометрические построения на плоскости
Описание общих аксиом конструктивной геометрии и математических инструментов. Правила формулировки задач на построение и методика их решения (методы геометрических мест и преобразований, алгебраический метод). Построения циркулем и иными инструментами.
Подобные документы
Геометрические построения, историческая справка. Построения с помощью циркуля и линейки. Общие аксиомы конструктивной геометрии. Геометрические построения одной линейкой. Аксиомы математических инструментов. Окружность и ее центр (построение Штейнера).
курсовая работа, добавлен 10.12.2011Общие аксиомы конструктивной геометрии, методы решения элементарных геометрических задач на построение на плоскости. Методы геометрических преобразований: симметрия, вращение, гомотетия, инверсия. Построение отрезков, заданных простейшими формулами.
курсовая работа, добавлен 12.01.2013Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.
курсовая работа, добавлен 25.01.2017Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Изображение геометрических фигур в параллельной проекции. Методика решения задач на построение. Изучение теоретической основы практической графики. Проективные преобразования.
курсовая работа, добавлен 09.11.2021Способы построения геометрических фигур с помощью циркуля и линейки. Схема решения задач с применением методов пересечения, подобия, методов инверсии, движения. Решение задачи построения фигур при помощи одной линейки, линейки и угольника, одного циркуля.
курс лекций, добавлен 29.01.2013Искусство построения геометрических фигур в Древней Греции. Построение циркулем и линейкой куба, имеющего объем вдвое больший, чем объем данного куба. Три знаменитые классические задачи древности. Решение задач на построение с помощью циркуля и линейки.
статья, добавлен 09.04.2019Правила решения задач на построение геометрических фигур в координатной плоскости с применением циркуля и линейки. Алгебраический метод получения отрезка. Формульные выражение для вычисления корней квадратного уравнения. Понятие однородных функций.
контрольная работа, добавлен 25.01.2015Разработка обучающего модуля по решению геометрических задач на построение. Примеры построения задач с помощью циркуля и линейки, схемы их решения. Определение свойства осевой симметрии плоскости. Метод осевой симметрии в решении задач на построение.
реферат, добавлен 02.04.2014Роль задач на построение в психическом развитии подростков. Задачи на построение в школьных учебниках. Геометрические построения с использованием линейки. Применение теоремы Дезарга для построения параллельных прямых. Задачи с недоступными элементами.
методичка, добавлен 10.04.2012- 10. Осевая симметрия
Изучение свойств преобразований плоскости. Примеры решения задач с использованием преобразований плоскости. Анализ содержания школьных учебников геометрии по данной тематике. Возможности применения преобразований плоскости к решению задач планиметрии.
курсовая работа, добавлен 09.06.2013 Система постулатов построений с помощью циркуля и линейки. Различные методы решения задач на построение. Параллельное проектирование и его свойства. Изображение плоских фигур в параллельной проекции. Изображения прямых и плоскостей в аксонометрии.
методичка, добавлен 08.06.2015Особенности и способы построения перспективных проекций на плоскости. Исходные ортогональные проекции и необходимые построения. Построение перспективы второй окружности, расположенной в параллельной плоскости. Основы построения теней в перспективе.
курсовая работа, добавлен 25.04.2017Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.
курсовая работа, добавлен 04.03.2020Особенности построения проективной плоскости на базе трехмерного векторного пространства, аналитически и аксиоматически. Характеристика проективной плоскости, ее основные свойства. Анализ теорем Дезарга, Паппа, их применение на евклидовой плоскости.
курсовая работа, добавлен 21.05.2012Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).
реферат, добавлен 01.11.2019Понятие и специфические особенности гамильтоновых циклов, их характеристики. Условия существования гамильтонова цикла. Задачи, связанные с поиском гамильтоновых циклов, методы их построения в графе. Алгебраический метод построения гамильтоновых циклов.
контрольная работа, добавлен 23.04.2011Разработка теории преобразований, обеспечивающей точность отображения объектов на плоскость. Способы задания гомотетии. Свойства аффинного преобразования. Применение в геометрии математических теорий подобия на плоскости при различных системах координат.
курсовая работа, добавлен 30.07.2017Геометрия как одна из наиболее древних математических наук. Творчество Евклида и его значение для математики. Изучение истории развития геометрии. Примеры доказательства пятого постулата Евклида. Рассмотрение аксиоматического построения геометрии.
курсовая работа, добавлен 05.04.2014Точка встречи как точка пересечения прямой и плоскости, закономерности ее построения. Общие правила построения линий взаимного пересечения геометрических тел. Пересечение прямой с поверхностями геометрических тел. Взаимное пересечение тел вращения.
методичка, добавлен 07.12.2013Специфика построения на местности, основанное на геометрических законах. Провешивание прямых, определение точки пересечения; симметрия относительно точки, деление отрезков; построение биссектрисы угла, перпендикуляра к прямой; измерение высоты предмета.
реферат, добавлен 07.10.2010Описание метода координат и способов его применения на примере конкретных математических задач. Выделение умений, необходимых для успешного овладения методом координат и подбор задач, формирующих данные умения. Этапы решения задач методом координат.
дипломная работа, добавлен 09.02.2023Особенности решения задач по начертательной геометрии. Взаимное положение точек, линий и плоскостей, способы их преобразований и построение проекций. Определение истинных величин и октант. Построение сечения многогранника плоскостью и его развертка.
учебное пособие, добавлен 23.11.2011Сущность и применение методики дополнительных построений. Основные принципы стереометрии и планиметрии. Применение метода площадей, метода объемов в математике. Алгебраический метод определения площади треугольника. Особенности расчета объема тетраэдра.
презентация, добавлен 09.12.2014Проведение исследования бинарной и унарной алгебраических операций на множестве. Особенность формализации нечеткой информации для построения математических моделей. Характеристика аксиом меры нечеткости. Основные виды метрик функциональных пространств.
лабораторная работа, добавлен 06.10.2017Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.
курсовая работа, добавлен 03.11.2018