Обработка экспериментальных данных
Статистическая гипотеза о значимости коэффициента функции регрессии. Построение квадратичной модели функции регрессии. Интерполирование функций. Регрессионные модели, нелинейные относительно как неизвестных параметров, так и включенных переменных.
Подобные документы
Построение модели регрессии. Анализ качества модели и анализ остатков. Корреляционный и визуальный анализ взаимосвязи показателей. Расчет коэффициента корреляции и проверка статистической его значимости. Особенности анализа коэффициентов регрессии.
контрольная работа, добавлен 17.04.2014Характер расположения точек в корреляционном поле. Построение моделей линейной регрессии для несгруппированных данных. Оценка надежности коэффициента корреляции, адекватности уравнения регрессии. Коэффициент детерминации, его смысловое значение.
лабораторная работа, добавлен 21.01.2015Регрессионные модели. Статистическая значимость коэффициента регрессии. Метод наименьших квадратов: шаговая структура. Линеаризация нелинейных моделей. Эконометрическое прогнозирование. Оценивание параметров линейных моделей, а также их верификация.
методичка, добавлен 25.10.2012Нелинейная корреляции для парного и множественного уравнений регрессии. Проверка их значимости. Оценка качества построенной модели с помощью средней ошибки аппроксимации. Интервальная оценка функции регрессии и её параметров. Метод наименьших квадратов.
реферат, добавлен 03.01.2013Методы построения нелинейных регрессионных моделей. Сущность регрессии линейной и нелинейной. Особенности оценки адекватности модели. Применение парной нелинейной регрессии и линеаризации для анализа воздействия инфляции на количество безработных.
курсовая работа, добавлен 24.11.2013Порядок построения линейного уравнения парной регрессии. Расчет коэффициента парной корреляции и ошибки аппроксимации. Статистическая значимость параметров регрессии и корреляции. Модель множественной регрессии. Коэффициент множественной детерминации.
контрольная работа, добавлен 10.12.2013Построение моделей линейной регрессии для сгруппированных данных по методу наименьших квадратов и с использованием коэффициента линейной корреляции. Оценка надежности уравнения регрессии. Распределение статистической выборки в корреляционном поле.
лабораторная работа, добавлен 21.01.2015Построение линейной модели множественной регрессии, оценка адекватности построенного уравнения регрессии. Расчет стандартизованных коэффициентов модели. Распределение стран по кластерам, соотвествующим уровню жизни населения, построение диаграмм.
контрольная работа, добавлен 11.12.2019Определение параметров уравнения линейной регрессии, проверка их значимости с помощью критериев Фишера и Стьюдента. Экономическая интерпретация коэффициента регрессии; оценка дисперсии остатков. Относительные ошибки аппроксимации прогнозных моделей.
контрольная работа, добавлен 18.09.2013Цели применения к преобразованным данным обобщенного метода наименьших квадратов. Регрессионные модели с переменной структурой (фиктивные переменные). Анализ применения фиктивных переменных для функции спроса. Уравнение регрессии с фиктивными переменными.
лекция, добавлен 25.04.2015Нахождение и оценка математического ожидания и дисперсии случайной величины. Построение гистограмм экспериментальных данных в интервалах найденных значений. Расчет эмпирических функций распределения случайных величин и нахождение плотности вероятности.
контрольная работа, добавлен 12.11.2017Обзор областей возможного применения логистической регрессии. Построение модели прогнозирования движения цены акций на бирже. Преобразование данных для улучшения качества модели. Анализ закономерностей и прогнозирование движения рынка, потока клиентов.
статья, добавлен 17.08.2018Зависимость объема продаж бензина от динамики потребительских цен. Значение выборочного линейного коэффициента корреляции. Оценка статистической значимости коэффициента детерминации с помощью гипотез. Нахождение значения средней ошибки аппроксимации.
практическая работа, добавлен 15.12.2015Рассмотрение возможных альтернатив с помощью модели бинарного выбора. Эконометрическое моделирование переменных и гипотез. Статистическая значимость логит- и пробит-моделей выбора. Проверка значимости модели при помощи теста отношения правдоподобия.
реферат, добавлен 26.04.2015Оценка выборочного коэффициента корреляции. Построение корреляционного поля. Уравнение линейной регрессии. Оценка тесноты корреляционной зависимости. Определение среднего квадратического отклонения. Статистическая значимость коэффициентов регрессии.
контрольная работа, добавлен 14.06.2014Оценка коэффициентов линейной регрессии по методу наименьших квадратов. Расчет доверительных интервалов для теоретических коэффициентов регрессии. Оценка параметров модели с распределенным лагом. Определения коэффициентов, входящих в уравнения регрессии.
контрольная работа, добавлен 20.05.2012Ранжирование факторов по степени их влияния на результат на основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности. Нахождение коэффициентов парной, частной, множественной корреляции, коэффициента множественной детерминации.
контрольная работа, добавлен 03.06.2015Характеристика принципа конкретных количественных и качественных взаимосвязей экономических объектов и процессов с помощью математических и статистических методов. Построение уравнения парной регрессии. Статистический анализ модели и оценка её качества.
лекция, добавлен 22.07.2014Факторы влияния на экономические показатели. Использование множественной регрессии в изучении проблем спроса, доходности акций, функции издержек производства, в макроэкономических расчетах. Оценка параметров линейного уравнения множественной регрессии.
реферат, добавлен 21.11.2022Рабочая гипотеза о связи факторов и поле корреляции. Расчет параметров линейной регрессии. Расчет параметров линейно-логарифмической функции. Линейно-логарифмическая регрессия и показатели корреляции. Коэффициент корреляции и коэффициент детерминации.
задача, добавлен 12.11.2011Расчет корреляционной матрицы прибыли от экономической модели. Факторы мультиколинеарности. Параметры модели множественной регрессии. Оценка значимости коэффициента корреляции. Оценка уровня прибыли за счет каждого фактора по коэффициенту эластичности.
контрольная работа, добавлен 17.03.2020Оценка коэффициентов регрессии с использованием формул для расчета ковариации двух случайных величин и выборочной дисперсии. Построение регрессионной зависимости и ее экономическая интерпретация. Проверка оценки с помощью коэффициента детерминации.
лабораторная работа, добавлен 11.05.2016Расчет линейного коэффициента парной корреляции и доверительного интервала. Определение коллинеарности переменных. Уравнение парной линейной регрессии. Оценка качества модели с помощью коэффициента детерминации. Расчет среднего коэффициента эластичности.
методичка, добавлен 11.12.2015Овладение способами выбора модельного уравнения нелинейной регрессии. Рассмотрение характера расположения точек в корреляционном поле. Расчет параметров уравнения, проверка его надежности. Построение кривой нелинейной регрессии в системе координат.
лабораторная работа, добавлен 21.01.2015Спецификация эконометрической модели. Отбор факторов, включаемых в модель множественной регрессии. Понятие и исследование фиктивных переменных. Линейное уравнение, его составление и разрешение. Свойства оценок параметров эконометрической модели.
шпаргалка, добавлен 10.02.2014