Построение модели линейной множественной регрессии для моделирования численности населения Белгородской области
Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.
Подобные документы
Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 04.05.2011Оценка статистической надежности уравнения регрессии с помощью F-критерия Фишера, коэффициента детерминации и скорректированного коэффициента детерминации. Расчет коэффициента корреляции для определения тесноты связи между исследуемыми признаками.
задача, добавлен 25.03.2020Установление мультиколлинеарности факторов. Уравнение множественной регрессии в линейной форме с полным набором факторов. Статистическая значимость уравнения и его параметров с помощью критериев Фишера и Стьюдента. Расчет коэффициентов эластичности.
задача, добавлен 16.03.2014Построение диаграммы рассеяния и описание взаимосвязи переменных. Построение уравнения множественной регрессии в линейной форме с выбранными факторами. Расчет параметров линейной парной регрессии. Составление уравнений и графиков нелинейной регрессии.
контрольная работа, добавлен 28.04.2016Особенности эконометрического моделирования стоимости квартир. Порядок построения классической линейной модели множественной регрессии. Анализ показателей: индекса корреляции и детерминации, F-критерий Фишера. Оценка матрици на мультиколлинеарность.
контрольная работа, добавлен 12.01.2014Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.
учебное пособие, добавлен 18.03.2015Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.
задача, добавлен 27.09.2016Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.
контрольная работа, добавлен 08.03.2015Определение зависимости среднедушевого потребления продукта от размера дохода и индекса цен. Построение матрицы парных коэффициентов корреляции. Оценка уравнения регрессии с помощью критериев Фишера и Стьюдента. Прогнозирование эластичности спроса.
контрольная работа, добавлен 01.11.2015Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.
контрольная работа, добавлен 16.07.2019Построение поля корреляции, расчет параметров уравнения линейной регрессии, оценка тесноты связи. Сравнительная оценка силы связи фактора с результатом. Анализ линейных коэффициентов парной и частной корреляции. Уравнение множественной регрессии.
контрольная работа, добавлен 30.03.2010Построение уравнения линейной и квадратичной регрессии с помощью метода наименьших квадратов. Анализ тесноты связи с помощью показателей корреляции и детерминации. Расчет общего и частного F-критерия Фишера. Сущность информативных лаговых переменных.
контрольная работа, добавлен 07.10.2015Парная регрессия и корреляция. Построение уравнения регрессии. Оценка параметров модели, тесноты связи. Расчет доверительных интервалов. Точечный и интервальный прогноз по уравнению линейной регрессии. Основные цели множественной регрессии и корреляции.
методичка, добавлен 16.05.2016Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.
курсовая работа, добавлен 23.11.2013Экономическая интерпретация коэффициента регрессии. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Коэффициенты детерминации и средние относительные ошибки аппроксимации. Прогнозирование среднего значения показателя.
контрольная работа, добавлен 30.11.2013Корреляционные поля и цель их построения. Коэффициенты уравнения парной линейной регрессии. Связь между коэффициентами регрессии и корреляции. Определение параметров парной линейной регрессии. Графическое представление уравнения парной линейной регрессии.
реферат, добавлен 30.01.2013Проведение методом линейной множественной регрессии идентификации модели, ее верификация. Оценка статистической значимости коэффициентов В0, В1, В2 с помощью t-статистики Стьюдента. Проверка наличия автокорреляции отклонений с помощью статистики Уотсона.
контрольная работа, добавлен 08.09.2014Оценка параметров уравнения множественной регрессии методом наименьших квадратов. Проверка регрессии на гетероскедастичность. Нахождение коэффициента автокорреляции остатков. Сравнение факторной и остаточной дисперсии в расчете на одну степень свободы.
контрольная работа, добавлен 01.06.2020Оценка практической значимости уравнения множественной регрессии с помощью показателя множественной корреляции и его квадрата – показателя детерминации. Теснота совместного влияния факторов на результат. Включение факторов в регрессионную модель.
реферат, добавлен 25.04.2015Параметры уравнения регрессии и корреляционного значения. Анализ точности определения оценок коэффициентов регрессии. Расчет показателя тесноты связи и значимости коэффициента корреляции. Нахождение уравнения линейной регрессии из системы уравнений.
контрольная работа, добавлен 15.05.2017Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Расчет остаточной суммы квадратов. Оценка дисперсии остатков. Вычисление коэффициента детерминации, проверка значимости уравнения регрессии.
задача, добавлен 11.06.2013Спецификация эконометрической модели. Описание способов для определения наличия или отсутствия мультиколлинеарности. Отбор факторов, включаемых в модель множественной регрессии. Линейное уравнение множественной регрессии, сущность фиктивных переменных.
реферат, добавлен 31.03.2017Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.
презентация, добавлен 26.12.2014Изучение влияния факторов на производительность труда. Построение уравнения регрессии и распределения. Определение значимости коэффициентов парной корреляции. Проверка случайности колебаний уровней остаточной последовательности. Оценка точности модели.
лабораторная работа, добавлен 04.10.2016Параметры уравнения линейной регрессии, экономическая интерпретация коэффициента регрессии. Остаточная сумма квадратов. Проверка независимости остатков с помощью критерия Дарбина-Уотсона. Вычисление коэффициента детерминации. Построение степенной модели.
контрольная работа, добавлен 23.11.2011