Методы решения жестких краевых задач, включая новые методы и программы на С++ для реализации приведенных методов
Формула для вычисления вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Программа на С++ расчета цилиндрической и сферической оболочки.
Подобные документы
Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.
научная работа, добавлен 01.02.2013Решение системы дифференциальных уравнений 8-го порядка. Случай переменных коэффициентов. Формула для вычисления вектора частного решения. Перенос краевых условий в произвольную точку интервала интегрирования. Счет методом прогонки С.К. Годунова.
курсовая работа, добавлен 25.03.2010Формулы теории матриц для систем обыкновенных дифференциальных уравнений. Формулы построчного ортонормирования переносимых матричных уравнений краевых условий жестких краевых задач. Вариант расчета вектора частного решения систем неоднородных ОДУ.
контрольная работа, добавлен 17.07.2016Случай переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Решение задач методами краевых условий, прогонки С.К. Годунова, половины констант. Применяемые формулы построчного ортонормирования.
научная работа, добавлен 18.10.2010Известные формулы теории матриц для обыкновенных дифференциальных уравнений. Вычисление оболочек составных и со шпангоутами простейшим методом "сопряжения участков интервала интегрирования". Свойства переноса краевых условий в методе С.К. Годунова.
монография, добавлен 10.08.2017Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.
статья, добавлен 26.06.2016Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Разностные методы решения краевых задач для уравнений в частных производных. Методы решения сеточных уравнений - специфическая система линейных алгебраических уравнений. Аппроксимация. Теорема о сходимости разностной схемы. Метод верхней релаксации.
курсовая работа, добавлен 06.05.2015Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.
статья, добавлен 27.05.2018Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.
статья, добавлен 02.02.2019Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.
статья, добавлен 31.05.2013Характеристика решения первой краевой задачи конечно-разностным и методом прогонки. Их особенности, описание и специфика применения к конкретному случаю. Код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.
курсовая работа, добавлен 01.12.2009Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
статья, добавлен 27.11.2018Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.
курсовая работа, добавлен 22.04.2011Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.
статья, добавлен 07.08.2020Численные методы решения нелинейных уравнений. Отделение корней уравнения. Численные методы интегрирования. Формулы прямоугольников, трапеций. Формула Симпсона. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера и Рунге-Кутты.
методичка, добавлен 25.03.2015Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012Описание результатов решения начальных и краевых задач с учетом неустранимой погрешности. Характеристика круга решаемых задач и преимуществ предложенных методов. Анализ значения учета погрешностей для решения задач повышения надежности устройств.
статья, добавлен 24.07.2018- 19. Численные методы
Понятие и типы погрешности: относительная и абсолютная, их определение. Численные методы решений трансцендентных и алгебраических уравнений. Сущность интегрирования. Решение начально-краевых задач для дифференциальных уравнений в частных производных.
учебное пособие, добавлен 02.05.2013 Основополагающее значение задачи интерполяции. Основные методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений. Классификация методов приближения. Критерии качества оценки погрешности.
курсовая работа, добавлен 20.01.2013Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.
контрольная работа, добавлен 12.12.2012Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).
реферат, добавлен 01.11.2019Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Методика составления и решения системы линейных алгебраических уравнений, их графическое изображение. Теорема Кронекера-Канелли о признаках совместимости системы и ее доказательство. Метод Крамера и матричный метод решения неоднородной системы уравнений.
контрольная работа, добавлен 26.07.2009Рассмотрение численных методов решения уравнений переноса и реализация одного из методов решения на языке программирования С/C++ и в пакете MS Excel. Рассмотрение и решение задачи Коши для уравнений переноса. Линейное одномерное уравнение переноса.
курсовая работа, добавлен 03.10.2017