Оцінка розподілів супремумів випадкових процесів та рівномірна збіжність їх вейвлет розкладів
Дослідження швидкості зростання супремуму випадкових процесів з просторів Орліча випадкових величин при прямуванні до нескінченності. Отримання нових теорем про рівномірну збіжність на обмеженому інтервалі вейвлет розкладів необмежених на функцій.
Подобные документы
Оцінка швидкості збіжності в локальній граничній теоремі для густин (рівномірних і нерівномірних) з використанням різних псевдомоментів. Збіжність до нормального закону в деяких імовірнісних метриках для однаково і різнорозподілених випадкових величин.
автореферат, добавлен 15.07.2014Розвиток теорії та дослідження квадратично-гауссових випадкових величин за допомогою методу мажоруючих мір, отримання нерівностей для розподілу супремуму таких процесів. побудова сумісних оцінок для коваріаційних функцій і гауссових випадкових процесів.
автореферат, добавлен 22.04.2014Отримання граничних теорем для сум незалежних випадкових величин, якi складають фундамент теорії ймовірностей. Теореми для сум незалежних випадкових елементів зі значеннями в абстрактних просторах та для випадкових елементiв з операторними нормуваннями.
автореферат, добавлен 07.03.2014Дослідження швидкості збіжності розподілів сум випадкових величин до нормального розподільного закону у центральній граничній теоремі. Методика використання псевдомоментів для оцінки швидкості збіжності у локальній граничній теоремі для щільностей.
автореферат, добавлен 25.08.2014Визначення строго субгауссових випадкових процесів, що допускають зображення у вигляді стохастичних інтегралів, будова моделей цих процесів. Оцінка точності i надiйностi моделей гауссових випадкових процесів в нормі простору неперервних функцій.
статья, добавлен 14.09.2016Дослідження оцінки розподілу супремумів для квадратично-гауссових випадкових процесів. застосування отриманих результатів до моделювання гауссового випадкового процесу так, що певні функціонали від процесу наближують їх від моделі з точністю й надійністю.
автореферат, добавлен 07.08.2014- 7. Граничні теореми для бакстерівських сум випадкових функцій та їх застосування для оцінок параметрів
Дослідження основних умов збіжності бакстерівських сум випадкових процесів і полів та їх застосування для оцінювання параметрів кореляційних функцій. Детермінована стала послідовності білінійних форм. Вивчення загального виду гауссових випадкових полів.
автореферат, добавлен 30.10.2015 Гауссівські та негауссівські граничні розподіли перенормованих оцінок найменших квадратів коефіцієнтів регресії випадкових процесів із сильною залежністю у випадку дискретного часу. Метод оцiнювання коефiцiєнта регресiї стацiонарних випадкових процесiв.
автореферат, добавлен 21.11.2013Зміст і призначення теорем про збіжність у теорії міри та інтегралу: Єгорова і Лебега про мажоровану збіжність. Концепція про слабку збіжність у банахових просторах. Теорема Рімана про збіжність рядів та її застосування, математичне обґрунтування.
автореферат, добавлен 28.09.2015Одержання умов збіжності, оцінок швидкості збіжності функціональних випадкових рядів у нормах просторів Орліча та Соболєва. Застосовність методу Фур'є до розв’язання крайової задачі для рівняння гіперболічного типу з випадковими початковими умовами.
автореферат, добавлен 23.11.2013Сутність випадкових процесів як процесів з дискретними станами. Дослідження поняття марківського випадкового процесу та його використання у біології, фізиці, теорії обслуговування. Ілюстрація марківських випадкових процесів за допомогою графу станів.
статья, добавлен 02.12.2016Основні поняття теорії випадкових процесів, його реалізація. Ймовірність випадкового процесу: дискретного, неперервного часу або стану, математичного сподівання та дисперсії, квадратичного відхилення. Властивості кореляційних функцій випадкового процесу.
лекция, добавлен 01.05.2014Універсальний метод точного опису і аналізу марковських випадкових еволюцій з континуумом напрямків в евклідових просторах довільної розмірності. Вивчення багатовимірних узагальнень класичного телеграфного процесу Голдстейна-Каца, отримання їх розподілів.
автореферат, добавлен 27.07.2015Узагальнення підходів в детермінованій та стохастичній оптимізаціях в сенсі використання лінійних оцінок перетворень випадкових функцій. Побудова методів альтернативної квазіградієнтної оптимізації в умовах отримання додаткової інформації про "яри".
автореферат, добавлен 26.08.2015Розгляд комплекснозначних випадкових величин даного типу та доведення для них теореми про чистоту розподілу. Необхідні й достатні умови дискретності цих величин. Поглиблений аналіз випадкових векторів, заданих системами подрібнюючих розбиттів площини.
автореферат, добавлен 24.02.2014Закон розподілу системи випадкових величин: функція розподілу системи двох величин, функціональна залежність, стохастична або ймовірна залежність. Числові характеристики системи двох величин. Коефіцієнт кореляційної матриці та рівняння регресії.
презентация, добавлен 21.03.2014Методика розрізнення випадкових шумів і детермінованих хаотичних процесів, заданих своїми часовими реалізаціями, з визначенням спектру показників Ляпунова. Алгоритми еволюції неоднорідних марковських систем. Дослідження впливу на них хаотичних збурень.
автореферат, добавлен 12.02.2014Аналіз властивостей статистичної оцінки ентропії, побудованої за допомогою узагальненого методу спейсингів. Побудова критеріїв перевірки гіпотез про розподіли випадкових величин та критерію перевірки гіпотези про незалежність випадкових величин.
автореферат, добавлен 19.04.2014Вивчення марковських випадкових еволюцій у просторі Rn, знаходження аналітичних властивостей цих еволюцій. Гіперпараболічні рівняння, що їх задовольняють функції від марковських випадкових еволюцій в Rn. системи прямих і зворотних рівнянь Колмогорова.
автореферат, добавлен 22.04.2014Інтегральне представлення розкладу Іто–Вінера для випадкових величин, які наближають гауссівське випадкове поле. Необхідна і достатня умова в термінах коваріації для існування локального часу центрованого гауссівського випадкового поля загального вигляду.
автореферат, добавлен 14.09.2015Середнє значення випадкової величини та його властивості. Середні значення функції випадкового вектора. Математичне сподівання випадкових величин, розподілених за найбільш поширеними законами розподілу. Дисперсія випадкової величини та її властивості.
реферат, добавлен 12.03.2011Розвиток теорії систем лінійних та нелінійних випадкових рівнянь над полем GF(3). Умови збіжності до нуля ймовірності існування розв'язків системи випадкових рівнянь з n невідомими над полем GF(3) в заданій множині векторів при умові, що n зростає.
автореферат, добавлен 28.09.2015Дискретні і неперервні випадкові величини, чисельні характеристики. Дисперсія та її властивості, стандартні розподіли випадкових величин. Медіана, мода, асиметрія та ексцес випадкової величини. Функція одного, від двох або більше випадкових аргументів.
контрольная работа, добавлен 09.06.2010Закони розподілу ймовірностей випадкових величин. Теорема Чебишова та центральна гранична теорема Ляпунова. Нормальний закон розподілу випадкових величин: нормована функція Лапласа або інтеграл ймовірностей, розподіл Стьюдента, асиметрія та ексцес.
презентация, добавлен 21.03.2014Аналіз асимптотичних спектральних властивостей ансамблю зважених розріджених матриць. Необмеженість спектра у випадку ансамблю випадкових зважених матриць суміжності та у випадку ансамблю операторів Лапласа на випадкових графах з невід'ємною вагою.
автореферат, добавлен 26.02.2015