Исследование математической модели колебательного движения груза по заданным силам
Понятие математических моделей, их классификация и свойства, применение числовых методов в создании. Метод Рунге-Кутта в решении систем дифференциальных уравнений. Система Mathcad. Аппроксимация и ее главные функции. Алгоритмический анализ задачи.
Подобные документы
Понятие математической модели, ее основные свойства. Описание методов аппроксимации, применяемых для построения регрессионных математических моделей. Обзор основных функций системы MathCad. Алгоритмический анализ задачи и описание функционирования.
курсовая работа, добавлен 09.12.2013Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.
реферат, добавлен 05.06.2013Метод Рунге-Кутты для решения как одиночных дифференциальных уравнений первого порядка, так и систем уравнений первого порядка. Исследование метода Рунге-Кутты четвертого порядка для решения дифференциальных уравнений. Программа для решения уравнения.
контрольная работа, добавлен 29.03.2012Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.
статья, добавлен 26.10.2010Применение аналитических математических методов при моделировании процессов в науке и технике. Решение практических задач по баллистике методами Эйлера, Рунге-Кутта и Адамса. Учёт локальных особенностей искомой функции дифференциального уравнения.
лекция, добавлен 21.09.2017Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Понятие математической модели, ее свойства и классификация. Обзор систем и основные принципы компьютерного моделирования. Расчет значений функций токов в указанной схеме с использованием системы MathCAD и построение их сводного графика на одном поле.
курсовая работа, добавлен 23.05.2013Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.
курсовая работа, добавлен 06.04.2014Разработка итеративных методов явного и неявного приближенного вычисления К. Рунге и М.В. Куттой. Описание динамических систем с непрерывным временем в интегрированной среде разработки программного обеспечения Delphi 7 с помощью метода Рунге–Кутты.
отчет по практике, добавлен 06.04.2014Алгоритмы решения неоднородных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах для различных типов правых частей уравнений. Особенности, возникающие при решении уравнений в связи с существованием делителей нуля.
статья, добавлен 29.01.2019Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Решение задачи групповой классификации систем линейных дифференциальных уравнений первого порядка с двумя неизвестными функциями двух переменных. Групповая классификация систем дифференциальных уравнений основных подмоделей уравнений газовой динамики.
автореферат, добавлен 16.02.2018Характеристика модифицированных методов Эйлера. Определение порядка аппроксимации. Рассмотрение адаптивных процедур Рунге-Кутты. Построение фазового портрета в системе координат для поставленной задачи. Определение особенностей пересчета по правилу Рунге.
реферат, добавлен 28.10.2017Разные типы решений задачи Коши. Применение математической модели недемпфированного нелинейного осциллятора для анализа свойств численных методов. Решение уравнения Дуффинга. Локальная и глобальная погрешности при решении задач гармонического осциллятора.
статья, добавлен 06.11.2018Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.
курсовая работа, добавлен 26.11.2014Разработка математических моделей эксплуатационной и интерференционной конкуренций на линейном ареале на базе систем уравнений с распределенными параметрами. Построение численного решения краевой задачи для системы нелинейных дифференциальных уравнений.
статья, добавлен 07.08.2020Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014- 20. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
доклад, добавлен 09.10.2012 Теоретические основы постановки и решения инженерных задач. Решение алгебраических и трансцендентных уравнений с одной переменной и систем алгебраических уравнений. Интерполяция, аппроксимация и численное интегрирование табличных и сложных функций.
монография, добавлен 18.05.2015Ознакомление с основными методами решения нелинейных уравнений. Исследование и характеристика специальных способов решения определенных интегралов: правых прямоугольников и трапеций. Рассмотрение и анализ особенностей методов Эйлера и Рунге-Кутта.
контрольная работа, добавлен 08.11.2015Этапы разработки математической модели электромеханической системы. Определение допущений и начальных условий, определяемых физическим смыслом задачи. Методы решения математических уравнений, описывающих процессы. Интерпретация результатов моделирования.
презентация, добавлен 20.04.2017Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Разработка математической модели объекта в виде дифференциальных уравнений и систем, цели и методы данного процесса. Получение передаточных функций объекта по заданным динамическим каналам исследуемого объекта. Расчет основных коэффициентов функции.
курсовая работа, добавлен 24.03.2013