Фракталы
Разные виды фракталов. Изучение природных явлений и объектов окружающего мира с точки зрения проявления в них фрактала. Возможности практического применения фрактала. Применение теории хаоса в реальном мире. Броуновское движение и его применение.
Подобные документы
Понятие фрактала, пример L-системы. Предпосылки возникновения теории фракталов. Геометрические, алгебраические и стохастические фракталы. Особенности применения теории фракталов. Фрактальные свойства экономических, социальных, биологических процессов.
курсовая работа, добавлен 27.02.2016Приведение примеров сложных геометрических фигур, обладающих свойством самоподобия. Описание фрактальных свойств природных объектов: растений, морских животных, природных явлений. Рассмотрение игрушки "Матрешка" как фрактала в народном творчестве.
реферат, добавлен 15.03.2017Основные понятия геометрии фракталов. Фрактал – множество, обладающее свойством самоподобия, история происхождения. Графическая интерпретация множества Мандельброта. Алгоритм построения пейзажа с помощью фрактала. Определение фрактальной размеренности.
дипломная работа, добавлен 11.11.2019Исследование фракталов как математических объектов, изучение их особенностей и свойств, таких как самоподобие. Понятие дробной размерности. Канторово множество и его обобщение. Снежинка Коха, ковры Серпинского, кривая Пеано, дракон Хартера-Хейтуэя.
дипломная работа, добавлен 21.04.2011- 5. Фракталы
Общее понятие о фракталах. Самоподобие как одно из основных свойств фракталов. Основные типы фракталов и их характеристики: геометрические, алгебраические и схоластические. Роль фракталов в современном мире, основные области и сферы их применения.
реферат, добавлен 11.12.2011 Классификация и особенности построения некоторых геометрических фракталов. Рассмотрение фрактальных структур в природе, фрактальной графики и фрактальных картин в интерьере. Возможности применения фракталов в естественных науках, радиотехнике, финансах.
реферат, добавлен 09.04.2017Фрактальная геометрия Бенуа Мандельброта. Наиболее известные геометрические и алгебраические фракталы. Применение фракталов в экономике, механике жидкостей и газов, физике поверхностей, нефтехимии, геологии, картографии. Особенности фрактальных картин.
презентация, добавлен 11.05.2014Исследование особенностей фрактальной геометрии и ее приложений. Выявление классификации фракталов. Основные отрасли их применения в жизни человека в условиях новейших технологий. Установление взаимосвязи фрактальных свойств и природных объектов.
статья, добавлен 15.02.2019Использование фракталов для построения обычных и фоновых изображений, для анализа состояния биржевых рынков, при моделировании нелинейных процессов. Использование фракталов как популярного инструмента у трейдеров для анализа состояния биржевых рынков.
статья, добавлен 20.07.2018Рассмотрение математического множества, обладающего свойством самоподобия. Решение проблемы нахождения радиуса и координат центра произвольной окружности при помощи компьютерных методов. Построение первых n поколений фрактала в графическом модуле.
творческая работа, добавлен 20.04.2015Фракталы и математический хаос, открытие их свойств при изучении итерированных отображений. Классические фракталы (самоподобие, снежинка Коха, ковер Серпинского). Графическая реализация L-систем в качестве подсистемы вывода. Понятие хаотической динамики.
реферат, добавлен 03.10.2012История происхождения фрактал как сложной геометрической фигуры, обладающей свойством подобия. Классические примеры геометрических фракталов. Использование двумерные стохастические фракталы при моделировании рельефа местности и поверхности моря.
реферат, добавлен 03.05.2022Суть броуновского движения и определение. Программирование на Delphi. Коды программ "Броуновское движение, как хаотичное движение частиц" и "построение траектории броуновское движение". Нормированная гауссовская кривая. Общая структура файла модуля.
курсовая работа, добавлен 18.12.2014Фрактал как геометрическое образование, представляющее систему самоподобных фигур, расположенных закономерным образом. Фрактальные свойства в природе. Построение Снежинки Коха и фрактал раковина. Актуальность фракталов в нашей жизни и фракталы-анимация.
презентация, добавлен 09.12.2012Математические уравнения как основное средство познания при моделировании физических явлений и строения окружающего мира, их классификация и типы. Понятие диофантового анализа уравнений и принципы его реализации, варианты решения при использовании.
реферат, добавлен 22.04.2016Анализ динамики реальных природных систем. Моделирование каскадных водопадов и турбулентных процессов. Самоподобие как основное характерное свойство фракталов. Понятие дробной размерности. Правила построения снежинки Коха. Салфетка и ковёр Серпинского.
реферат, добавлен 07.12.2016Удосконалення методу моделювання на основі математичного стохастичного фрактала, побудованого деформованим броунівським зміщенням серединної точки пласкої ґратки в моделі урбанізації. Принципи прогнозування структури та форми урбанізованих територій.
автореферат, добавлен 14.08.2015История развития фрактальной геометрии. Исследование фракталов в природе и математике, составление программы моделирования сложных неевклидовых объектов, образы которых весьма похожи на природные. Моделирование фракталов на языке программирования.
научная работа, добавлен 24.09.2013Изучение математического изобразительного искусства, его использования в рисовании, литографии, графике. Характеристика техники выполнения рисунка, фрактала, ленты Мебиуса. Описания перспективы, науки об изображении предметов в пространстве на плоскости.
реферат, добавлен 24.12.2010Основные этапы развития теории вероятностей. Классификация наблюдаемых событий и явлений: достоверные, невозможные и случайные. Определение понятий событие, его вероятность и частота, случайная величина. Применение теории вероятностей в современном мире.
реферат, добавлен 27.02.2012История возникновения и развития логарифмов. Таблицы Иоста Бюрги. Логарифмическая спираль. Связь логарифмов и музыки. Применение логарифмов для познания окружающего мира. Логарифмическая зависимость между величиной ощущения и порождающего его раздражения.
контрольная работа, добавлен 16.11.2013Теория хаоса, ее положение в современной науке, историческое развитие, инструменты теории. "Эффект бабочки". Свойства хаотических аттракторов. Фрактал, бифуркация. Динамический хаос как заключительное состояние эволюционирующих физических систем.
научная работа, добавлен 25.02.2009Анализ критерия согласия Колмогорова и омега-квадрата в случае простой гипотезы. Критерии согласия Пирсона и Фишера и их применение в математической статистике. Использование этой категории для распределения Пуассона. Случаи практического применения.
курсовая работа, добавлен 29.08.2014Теория вероятности как наука, которая изучает закономерности массовых случайных явлений. Знакомство с особенностями применения теории вероятности и математической статистики в экономике. Общая характеристика выборочного метода статистических исследований.
статья, добавлен 25.03.2019Особенности и закономерности применения теории вероятностей в различных сферах общественной жизни. Этапы ее развития и специфика использования в профессиональной деятельности. Конкретные примеры применения данной теории в экономике и менеджменте.
статья, добавлен 20.01.2022