Фракталы
Разные виды фракталов. Изучение природных явлений и объектов окружающего мира с точки зрения проявления в них фрактала. Возможности практического применения фрактала. Применение теории хаоса в реальном мире. Броуновское движение и его применение.
Подобные документы
Понятие фрактала, пример L-системы. Предпосылки возникновения теории фракталов. Геометрические, алгебраические и стохастические фракталы. Особенности применения теории фракталов. Фрактальные свойства экономических, социальных, биологических процессов.
курсовая работа, добавлен 27.02.2016Приведение примеров сложных геометрических фигур, обладающих свойством самоподобия. Описание фрактальных свойств природных объектов: растений, морских животных, природных явлений. Рассмотрение игрушки "Матрешка" как фрактала в народном творчестве.
реферат, добавлен 15.03.2017Основные понятия геометрии фракталов. Фрактал – множество, обладающее свойством самоподобия, история происхождения. Графическая интерпретация множества Мандельброта. Алгоритм построения пейзажа с помощью фрактала. Определение фрактальной размеренности.
дипломная работа, добавлен 11.11.2019Исследование фракталов как математических объектов, изучение их особенностей и свойств, таких как самоподобие. Понятие дробной размерности. Канторово множество и его обобщение. Снежинка Коха, ковры Серпинского, кривая Пеано, дракон Хартера-Хейтуэя.
дипломная работа, добавлен 21.04.2011- 5. Фракталы
Общее понятие о фракталах. Самоподобие как одно из основных свойств фракталов. Основные типы фракталов и их характеристики: геометрические, алгебраические и схоластические. Роль фракталов в современном мире, основные области и сферы их применения.
реферат, добавлен 11.12.2011 Классификация и особенности построения некоторых геометрических фракталов. Рассмотрение фрактальных структур в природе, фрактальной графики и фрактальных картин в интерьере. Возможности применения фракталов в естественных науках, радиотехнике, финансах.
реферат, добавлен 09.04.2017Фрактальная геометрия Бенуа Мандельброта. Наиболее известные геометрические и алгебраические фракталы. Применение фракталов в экономике, механике жидкостей и газов, физике поверхностей, нефтехимии, геологии, картографии. Особенности фрактальных картин.
презентация, добавлен 11.05.2014Исследование особенностей фрактальной геометрии и ее приложений. Выявление классификации фракталов. Основные отрасли их применения в жизни человека в условиях новейших технологий. Установление взаимосвязи фрактальных свойств и природных объектов.
статья, добавлен 15.02.2019Использование фракталов для построения обычных и фоновых изображений, для анализа состояния биржевых рынков, при моделировании нелинейных процессов. Использование фракталов как популярного инструмента у трейдеров для анализа состояния биржевых рынков.
статья, добавлен 20.07.2018Рассмотрение математического множества, обладающего свойством самоподобия. Решение проблемы нахождения радиуса и координат центра произвольной окружности при помощи компьютерных методов. Построение первых n поколений фрактала в графическом модуле.
творческая работа, добавлен 20.04.2015Фракталы и математический хаос, открытие их свойств при изучении итерированных отображений. Классические фракталы (самоподобие, снежинка Коха, ковер Серпинского). Графическая реализация L-систем в качестве подсистемы вывода. Понятие хаотической динамики.
реферат, добавлен 03.10.2012Описание фрактального анализа текстурных изображений, была рассмотрена классификация фракталов. Основные свойства фрактальных множеств, оценка размера фрактала производится по яркостному компоненту изображения. Характеристика треугольника Серпинского.
статья, добавлен 23.02.2025История происхождения фрактал как сложной геометрической фигуры, обладающей свойством подобия. Классические примеры геометрических фракталов. Использование двумерные стохастические фракталы при моделировании рельефа местности и поверхности моря.
реферат, добавлен 03.05.2022Суть броуновского движения и определение. Программирование на Delphi. Коды программ "Броуновское движение, как хаотичное движение частиц" и "построение траектории броуновское движение". Нормированная гауссовская кривая. Общая структура файла модуля.
курсовая работа, добавлен 18.12.2014Фрактал как геометрическое образование, представляющее систему самоподобных фигур, расположенных закономерным образом. Фрактальные свойства в природе. Построение Снежинки Коха и фрактал раковина. Актуальность фракталов в нашей жизни и фракталы-анимация.
презентация, добавлен 09.12.2012Математические уравнения как основное средство познания при моделировании физических явлений и строения окружающего мира, их классификация и типы. Понятие диофантового анализа уравнений и принципы его реализации, варианты решения при использовании.
реферат, добавлен 22.04.2016Анализ динамики реальных природных систем. Моделирование каскадных водопадов и турбулентных процессов. Самоподобие как основное характерное свойство фракталов. Понятие дробной размерности. Правила построения снежинки Коха. Салфетка и ковёр Серпинского.
реферат, добавлен 07.12.2016Удосконалення методу моделювання на основі математичного стохастичного фрактала, побудованого деформованим броунівським зміщенням серединної точки пласкої ґратки в моделі урбанізації. Принципи прогнозування структури та форми урбанізованих територій.
автореферат, добавлен 14.08.2015История развития фрактальной геометрии. Исследование фракталов в природе и математике, составление программы моделирования сложных неевклидовых объектов, образы которых весьма похожи на природные. Моделирование фракталов на языке программирования.
научная работа, добавлен 24.09.2013Изучение математического изобразительного искусства, его использования в рисовании, литографии, графике. Характеристика техники выполнения рисунка, фрактала, ленты Мебиуса. Описания перспективы, науки об изображении предметов в пространстве на плоскости.
реферат, добавлен 24.12.2010Основные этапы развития теории вероятностей. Классификация наблюдаемых событий и явлений: достоверные, невозможные и случайные. Определение понятий событие, его вероятность и частота, случайная величина. Применение теории вероятностей в современном мире.
реферат, добавлен 27.02.2012История возникновения и развития логарифмов. Таблицы Иоста Бюрги. Логарифмическая спираль. Связь логарифмов и музыки. Применение логарифмов для познания окружающего мира. Логарифмическая зависимость между величиной ощущения и порождающего его раздражения.
контрольная работа, добавлен 16.11.2013Теория хаоса, ее положение в современной науке, историческое развитие, инструменты теории. "Эффект бабочки". Свойства хаотических аттракторов. Фрактал, бифуркация. Динамический хаос как заключительное состояние эволюционирующих физических систем.
научная работа, добавлен 25.02.2009Анализ критерия согласия Колмогорова и омега-квадрата в случае простой гипотезы. Критерии согласия Пирсона и Фишера и их применение в математической статистике. Использование этой категории для распределения Пуассона. Случаи практического применения.
курсовая работа, добавлен 29.08.2014Теория вероятности как наука, которая изучает закономерности массовых случайных явлений. Знакомство с особенностями применения теории вероятности и математической статистики в экономике. Общая характеристика выборочного метода статистических исследований.
статья, добавлен 25.03.2019