Теоремы о представлении дельта-субгармонических функций
Методика определения многочлена Гегенбауэра. Специфические особенности использования неванлинновских характеристических уравнений для нахождения дельта-субгармонических функций. Алгоритм разложения в ряд Тейлора выражения с центром в нуле функции.
Подобные документы
Логарифмическая производная функции. Производная степенно показательной функции. Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано. Теоремы о дифференцируемых функциях. Формулы разложения элементарных функций.
контрольная работа, добавлен 26.05.2014Знакомство с особенностями вычисления значения функции в заданной точке с помощью разложения в ряд Тейлора, анализ проблем. Общая характеристика гиперболических функций, способы определения. Рассмотрение вопросов о разложимости функции в ряд Тейлора.
контрольная работа, добавлен 18.09.2013Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.
контрольная работа, добавлен 06.02.2012Разработка нового способа для установления интегрируемости неограниченных разрывных функций. Теории первообразных функций. Восстановление функции по известной ее исправленной производной. Классическая теория интеграла Лебега. Дельта–функция Дирака.
статья, добавлен 20.05.2018Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.
практическая работа, добавлен 07.09.2016- 6. Ряд Тейлора
Ознакомление с историей открытия ряда Тейлора, который применяется при аппроксимации функции многочленами. Рассмотрение формулы Тейлора. Исследование рядов Маклорена некоторых функций. Характеристика натурального логарифма и биноминального разложения.
контрольная работа, добавлен 16.11.2017 Интерполяция как процесс нахождения многочлена не выше n-ой степени, ее содержание и предъявляемые требования, основные этапы и значение. Особенности интерполяционной формулы Лагранжа и Ньютона. Остаточный член интерполяции, методика его нахождения.
лекция, добавлен 08.09.2013Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.
презентация, добавлен 26.09.2017Метод Ньютона - универсальный способ нахождения границ многочлена. Раскрытие схемы Горнера. Доказательство теоремы Штурма. Сущность алгоритмов итераций, половинного деления, хорд и касательных. Решение задач на вычисление уравнений высших степеней.
курсовая работа, добавлен 06.01.2014Интерполяционная задача Эрмита о построении многочлена, принимающего заданные значения функции и ее производных в узловых точках. Упрощение вывода формулы интерполяционного многочлена Эрмита. Интерпретация многочлена в представлениях многочлена Тейлора.
статья, добавлен 12.05.2018- 11. Схема Горнера
Схема Горнера как алгоритм вычисления значения многочлена, записанного в виде суммы мономов, при заданном значении переменной. Решение уравнений высшей степени (деление многочлена с помощью схемы Горнера). Ее использование для деления многочлена на бином.
презентация, добавлен 18.12.2018 Рассмотрение вариантов решения однородных уравнений со степенью n>2. Описание алгоритма решения с наложением ограничения на величину коэффициента при втором члене выделяемого многочлена. Анализ возможности нахождения дробных значений корней уравнений.
лекция, добавлен 01.02.2017Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.
курсовая работа, добавлен 22.04.2011Рассмотрение понятий: аргумента, области определения. Методика изучения линейной, квадратной и кубической функции. Изучение уравнений параболического типа. Основные характеристики математических функций. Достаточные условия экстремума уравнения.
курсовая работа, добавлен 05.05.2015Рассмотрение задачи приближения периодических функций составными двухточечными многочленами Эрмита, представление этих многочленов, использующих значения функции и ее производных в точке. Связь двухточечных многочленов Эрмита и многочлена Тейлора.
статья, добавлен 12.08.2020Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.
методичка, добавлен 28.06.2013Задачи, приводящие к решению разрешающих уравнений, их применение. Решение разрешающих уравнений: метод определителей, обратной матрицы, градиента, разложения в ряд Тейлора, формулы приближенного дифференцирования. Аспекты разработки алгоритмов.
статья, добавлен 13.06.2015Направления исследования функций многих переменных на безусловный экстремум, а также на условный экстремум. Методика определения координат точек функций, дифференцирование уравнений. Формирование, анализ и оценка соотношений математической связи.
методичка, добавлен 08.09.2015- 20. Ряды Фурье
Члены тригонометрических рядов. Свойство системы тригонометрических функций. Ряд Тейлора. Особенности ряда Фурье четной и нечетной функции. Рабочие формулы для разложения функции в ряд Фурье. Применение программы MatLab для вычисления коэффициентов ряда.
контрольная работа, добавлен 23.04.2011 Обратные тригонометрические функции (аркфункции): определение и свойства. Теоремы об аркфункциях. Доказательство числовых тождеств. Решение уравнений и неравенств с аркфункциями. Использование свойств монотонности обратных тригонометрических функций.
контрольная работа, добавлен 22.04.2012Понятие векторной функции. Особенности нахождения предела непрерывности, производной и интеграла вектор-функции. Использование векторных функций в криволинейной системе координат. Характеристика приложения векторных функций в скалярном и векторном поле.
курсовая работа, добавлен 12.01.2021Понятие о функции двух переменных. Понятие и содержание линии уровня функции, порядок ее нахождения. Предел и его свойства. Непрерывность и дифференцируемость функции двух переменных. Частные производные. Методика определения дифференциала и градиента.
контрольная работа, добавлен 20.09.2011Аппроксимация, при которой приближение строится на заданном дискретном множестве точек. Интерполяционный полином Лагранжа в виде разложения. Получение интерполяционного многочлена функции. Оценка погрешности остаточного члена при вычислении логарифма.
курсовая работа, добавлен 13.03.2014История функций. Первые таблицы для нахождения тангенсов и котангенсов. Теорема синусов для сферических треугольников. Основная формула нахождения тангенса. Доказательство теоремы тангенсов для сферических углов и синусов для плоских треугольников.
презентация, добавлен 11.05.2013