Структура биалгебры Мальцева
Алгебраические системы, возникающие при формализации свойств коэффициентов сингулярной части операторного разложения произведений полей. Обобщение класса йордановых супералгебр. Анализ задачи о полярном разложении линейных операторов пространства.
Подобные документы
Вычисление определителя матрицы с помощью ее элементарных преобразований. Решение систем линейных уравнений методом Крамера. Алгебраические дополнения транспонированной матрицы. Решение выражений с помощью свойств скалярного, векторного произведений.
контрольная работа, добавлен 19.01.2014Анализ фундаментальных проблем в направлениях современной алгебры: теория неассоциативных алгебр, теория конечных групп и алгебраическая геометрия. Построение примеров йордановых супералгебр над произвольным полем. Арифметическое описание спектров.
научная работа, добавлен 28.10.2018Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.
учебное пособие, добавлен 23.11.2012Строение абелевых групп симметрий хиггсовского потенциала в вакууме для N-дублетной хиггсовской модели. Типы центральных простых конечномерных некоммутативных йордановых супералгебр. Конструкция кольца частных для обобщенной алгебры Новикова-Пуассона.
научная работа, добавлен 28.10.2018Определители матриц. Миноры и алгебраические дополнения. Решение линейных уравнений. Метод Гаусса. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Расстояние от точки до плоскости. Поверхности вращения.
шпаргалка, добавлен 25.03.2011Связь функциональных операторов с ретрактами и пространствами Дугунджи. Классификация функциональных операторов. Пространства частичных отображений и пространства решений дифференциальных уравнений. Теорема Дугунджи для пространства с фильтрациями.
статья, добавлен 19.10.2016Понятие и виды матриц, их применение в математике. Алгебраические операции, выполняемые с матрицами. Системы линейных уравнений. Условие разрешимости системы линейных уравнений на языке матриц. Примеры элементарных преобразований матриц, ранг матрицы.
реферат, добавлен 30.01.2016Прямая и обратная задачи решения системы линейных алгебраических уравнений. Использование результата для синтеза линейных систем при известных воздействиях на них и их реакциях на эти воздействия. Алгоритмы решения многокритериальной задачи оптимизации.
статья, добавлен 14.07.2016Метод фазового пространства, редукция сингулярного пространства. Основные сведения об относительных резольвентах. Результаты по теории дифференциальных операторов в банаховых пространствах. Конечномерная управляемость уравнения соболевского типа.
автореферат, добавлен 15.09.2012Изучение теоремы о верхнем и нижнем разложении матрицы, имеющей ненулевую диагональ. Ознакомление с расчетными формулами, используемыми для построения матриц. Очерк математических выражений по методу Гаусса и алгоритмы для ряда системных уравнений.
презентация, добавлен 30.10.2013Систематическое изучение семейств линейных полиномиальных операторов в шкале пространств. Использование методов теории функций одной и многих действительных переменных, теории вероятности, функционального анализа в банаховых пространствах, анализа Фурье.
автореферат, добавлен 12.05.2014Модули Капланского-Гильберта над L0. L0-линейные и L0-ограниченные отображения. Спектр L0-линейных и L0-ограниченных операторов. Спектральная теорема для линейных L0-ограниченных самосопряженных операторов в q-конечномерных модулях Капланского-Гильберта.
диссертация, добавлен 19.06.2015Вычисление определителя четвертого порядка, способов разложения его по элементам. Характеристика основных свойств определителей. Исследование системы линейных алгебраических уравнений (основных понятий и определений). Методы применения формулы Крамера.
презентация, добавлен 29.08.2015Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.
презентация, добавлен 21.09.2013Решение типовых задач, посвященных алгебраическим структурам. Приведение примеров групп и подгрупп, определение смежных классов и гомоморфизмов. Изучение понятия и свойств колец и полей. Определение признаков множества, являющегося идеалом в кольце.
учебное пособие, добавлен 02.04.2015Рассмотрение математической модели АСК-анализа как варианта общего и универсального практического решения проблемы разработки базисных функций и весовых коэффициентов для разложения в ряд по ним произвольной функции состояния идентифицируемого объекта.
статья, добавлен 09.11.2020Постановка задачи в операторной форме. Анализ её решения в виде линейной комбинации координатных функций. Изучение способов нахождения коэффициентов в каждом из рассматриваемых проекционных методов. Решение системы линейных алгебраических уравнений.
методичка, добавлен 13.09.2015- 18. Линейная алгебра
Понятие полукольца и кольца, векторного, евклидового и унитарного пространства. Рассмотрение различных видов линейных операторов: обратимых, симметрических, кососимметрических, нормальных, унитарных и ортогональных. Сопряженный и обратный операторы.
курсовая работа, добавлен 16.04.2012 - 19. Обратимость линейных дифференциальных операторов второго порядка в однородных пространствах функций
Изучение линейных дифференциальных операторов (уравнений) второго порядка в однородном пространстве функций, определенных на всей оси. Условия их обратимости. Условия разрешимости классов уравнений второго порядка с помощью операторных матриц 2 порядка.
статья, добавлен 01.02.2019 Сущность и структура линейных уравнений, их разновидности и свойства. Критерий совместности системы линейных уравнений, исследование теоремы Кронекера-Капелли. Метод Гаусса: содержание и назначение, сферы применения. Свойство свободных переменных.
лекция, добавлен 26.03.2012Основные формулы, используемые в методе Крамера и методе обратной матрицы при решении системы линейных алгебраических уравнений. Решение СЛАУ с помощью MS Excel. Ввод матрицы коэффициентов и вектора свободных коэффициентов. Определение обратной матрицы.
лабораторная работа, добавлен 11.03.2011Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.
курсовая работа, добавлен 14.06.2017Технология решений систем линейных алгебраических уравнений в интегрированной среде MathCad. Определение решения системы методом простой итерацией и матричным методом. Значение коэффициентов при неизвестных. Математическая палитра интегрированной среды.
лабораторная работа, добавлен 16.05.2015Применение общих утверждений о разрешимости квазилинейного операторного уравнения в резонансном случае. Рассмотрение задачи как периодической краевой задачи для одного скалярного уравнения. Важнейшая особенность проверки справедливости равенства.
статья, добавлен 26.04.2019Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений
реферат, добавлен 26.02.2010