Класифікація даних за допомогою нейронних мереж
Проведено аналіз різних алгоритмів класифікації даних, описано актуальність проведення наукового дослідження в цьому напрямі. Для аналізу було вибрано класифікатори на основі методів статистики, нейронних мереж та засновані на машинному навчанні.
Подобные документы
Аналіз методів та алгоритмів для вирішення задач класифікації об'єктів. Розробка автоматичних систем класифікації та кластеризації із застосуванням алгоритмів та апарату нейронних мереж. Побудова вектора ознак для вирішення задачі класифікації об'єктів.
автореферат, добавлен 14.08.2015Дослідження та аналіз методів розпізнавання символів за допомогою нейронних мереж. Розробка інтелектуального модулю штучних нейронних мереж, що функціонує за принципом перцептрона, та має можливість розпізнавати рукописні символи із зашумленістю до 40%.
статья, добавлен 29.01.2019Дослідження характеристики штучних нейронних мереж на прикладі задачі розпізнавання і класифікації. Характеристика особливостей функціонування різних архітектур в межах методу зворотного поширення похибки. Метод організації штучних нейронних мереж.
статья, добавлен 14.09.2016Розгляд методу для прогнозування виникнення дорожньо-транспортної пригоди в конкретному транспортному вузлі на основі нейронних мереж. Виявлення істотних факторів, що сприяють аварії. Навчання та тестування двох нейронних мереж з різними архітектурами.
статья, добавлен 11.07.2023Огляд існуючих підходів до вирішення задачі розпізнавання зображень. Опис основних методів, що використовуються в задачі розпізнавання зображень. Визначення етапів процесу розпізнавання зображень на основі нейронних мереж, алгоритмів розпізнавання.
статья, добавлен 26.10.2020- 6. Аналіз використання технології штучних нейронних мереж в якості нового підходу до обробки сигналів
Застосування штучних нейронних мереж для аналізу й обробки даних, отриманих в ході дослідження, калібрування і подальшого процесу обробки відомостей біосенсорів, схильних до зміни з часом. Особливість визначення процесу зберігання інформації як образів.
статья, добавлен 27.07.2016 Аналіз методів та формулювання принципів побудови штучних імунних і гібридних систем інтелектуального аналізу даних. Розроблення методів і засобів структурно-параметричного синтезу нейронних мереж для розв'язання задач прогнозування та класифікації.
автореферат, добавлен 20.07.2015Аналіз існуючих методів і алгоритмів, спрямованих на прискорення і підвищення якості структурного та параметричного синтезу прогнозуючих штучних нейронних мереж зі зворотним поширенням помилки. Розробка механізмів, що дозволяють істотно прискорити процес.
автореферат, добавлен 05.08.2014Основи програмування в математичному пакеті MatLab у додатку Fuzzy Logic Toolbox. Моделювання нейронних мереж за допомогою Simulink. Реалізація генетичних алгоритмів в додатку Genetic Algorithm. Нечітка експертна система з алгоритмом виведення Mamdani.
лабораторная работа, добавлен 23.05.2016Визначення основних особливостей та вимог щодо побудови нейронних мереж. Розгляд підходів до їх використання в процесі страхового андеррайтингу як повноцінної заміни андеррайтера та у перехідний період. Опис основних моделей навчання нейронних мереж.
статья, добавлен 28.12.2017У роботі здійснено аналіз сучасних досягнень у галузі штучних нейронних мереж, машинного навчання та обчислювального інтелекту, в основі чого лежить перцептрон як кібернетична модель сприйняття інформації мозком. Сфери застосування нейронних мереж.
статья, добавлен 26.04.2023Аналіз особливостей роботи протоколу обміну ключами з використанням взаємного навчання нейронних мереж. Існуючі атаки на протокол. Розподіл часу синхронізації нейронних мереж. Виявлення слабких місць протоколу, висновки стосовно його захищеності.
статья, добавлен 14.07.2016Розробка та дослідження варіанту автоматизованої класифікації пристроїв орієнтування як складових СООВ з використанням штучних нейронних мереж, що в подальшому забезпечить їх автоматизований вибір за попередньо розробленою відповідною методикою.
статья, добавлен 22.03.2013- 14. Моделі та методи розпізнавання класів багатопараметричних об’єктів на основі штучних нейронних мереж
Розробка архітектури та методик використання інтелектуальної системи розпізнавання образів на основі штучних нейронних мереж із конкуренційним навчанням. Моделі для модифікованих варіантів карт із самоорганізацією Кохонена та мереж зустрічного поширення.
автореферат, добавлен 27.07.2014 Аналіз сучасних досягнень у галузі штучних нейронних мереж, машинного навчання та обчислювального інтелекту, в основі чого лежить перцептрон як кібернетична модель сприйняття інформації мозком. сфери застосування розробок у галузі штучних нейронних мереж.
статья, добавлен 17.12.2022Використання штучних нейронних мереж з метою подальшої класифікації різних об'єктів, присутніх на конкретному зображенні. Опис інформаційної технології автоматизації наповнення навчального набору даних аерофотозйомки для нейромережевого розпізнавання.
статья, добавлен 26.04.2023Аналіз можливості використання різних типів нейронних мереж для розпізнавання "ідеального співрозмовника" серед користувачів соціальних мереж. Навчання нейронних мереж на основі експертних знань та модифікація класичної мережі ймовірнісного типу.
статья, добавлен 27.07.2016- 18. Моделі та алгоритми візуалізації багатовимірних даних на основі автоасоціативних нейронних мереж
Аналіз існуючих підходів до розв’язання задачі візуалізації багатовимірних даних, їх порівняння та визначення властивих їм обмежень та недоліків. Розробка архітектури нейронної мережі для зменшення розмірності багатовимірних даних із підвищеною якістю.
автореферат, добавлен 27.07.2014 - 19. Система м’яких обчислень на базі нейронних мереж адаптивного резонансу для розв’язання задач САПР
Виявлення переваг, недоліків архітектури і обчислювально-ефективних шляхів реалізації мереж. Дослідження методів побудови гібридних систем обробки інформації. Розробка й навчання нейронних мереж адаптивного резонансу. Використання систем м’яких обчислень.
автореферат, добавлен 25.07.2015 Біологічний прототип і штучний нейрон. Найпростіші нейронні мережі. Дослідження нервової системи. Вибір структури нейронної мережі. Класифікація нейронних мереж. Задачі для вирішення нейронних мереж. Функції, які не реалізуються одношаровою мережею.
отчет по практике, добавлен 02.11.2017Огляд існуючих штучних нейронних мереж, що застосовуються для вирішення задачі стискання зображень. Аналіз процесів взаємодії та формування популяцій генетичних алгоритмів. Розробка методу навчання штучних нейронних мереж в задачі стискання зображень.
автореферат, добавлен 19.06.2018Забезпечення конфіденційності даних при передаванні з розвідувально-пошукових безпілотних літальних апаратів за рахунок застосування нейронних мереж. Створення універсального датасету криптографічних алгоритмів для забезпечення конфіденційності даних.
статья, добавлен 21.12.2023Проведення теплової обробки дисперсних матеріалів індукційним способом передачі енергії до теплопередаючої поверхні на основі нечіткої логіки та гібридних нейронних мереж. Використанням графічного інтерфейсу моделі. Аналіз самоналаштування системи.
статья, добавлен 30.01.2017Виявлення і аналіз аномалій мережевого трафіку як один із способів захисту комп'ютерних систем і мереж. Методи виявлення аномального мережевого трафіку, які використовують виявлення на основі сигнатур і статистичних даних. Використання нейронних мереж.
статья, добавлен 30.09.2018Розгляд особливостей сенсорів, вихідний сигнал яких навмисно залежить від декількох фізичних величин. Знайомство з методом розпізнавання вихідного сигналу мультисенсора за допомогою модульних нейронних мереж. Характеристика середовища MATLAB 6.5.
статья, добавлен 28.08.2016