Искусственный интеллект в задачах управления и обработки информации
Решение прямой и обратной задач с помощью многослойной нейронной сети прямой передачи сигнала. Операторы отбора особей в новую популяцию. Нахождение глобального минимума функции одной переменной и двух аргументов с помощью генетических алгоритмов.
Подобные документы
- 1. Обращение операторов в нелинейной теории оболочек с помощью нейронной сети и генетического алгоритма
Применение нейронной сети для идентификации функции нагрузки тонкостенной оболочки по результатам наблюдений. Обоснование возможности аппроксимации зависимости между результатами наблюдений и неизвестными функциями обратных задач с помощью нейронной сети.
статья, добавлен 27.09.2016 Кластеризация, решение задач коммивояжера с помощью генетических алгоритмов. Разбиение участников рейда на группы методом древовидной кластеризации, выявление центра сбора участников с помощью генетических алгоритмов. Проверка качества кластеризации.
курсовая работа, добавлен 05.02.2014Процесс формирования параметров изменяемого пользовательского интерфейса. Возможность применения методов нейронных сетей для обработки характеристик и классификации категорий пользовательских интерфейсов; структура искусственной нейронной сети.
статья, добавлен 08.03.2019Метод представления знаний при проектировании модели. Требования к качеству восприятия информации, отображаемой на дисплеях. Схема простой многослойной искусственной нейронной сети. Неформальное определение когнитивной карты. Искажения изображения.
дипломная работа, добавлен 13.02.2016Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012Анализ подходов адаптивного управления для задач управления объектами с переменной структурой. Описание структуры нейронной сети регулятора. Решение задачи управления и стабилизации вертикальной координаты электромеханической летающей модели вертолета.
статья, добавлен 28.05.2017Рассмотрение нейросетевых модификаций решения задач анализа изображений. Ознакомление со способами обучения нейронной сети для определения параметров прямой. Формирование виртуальной модели стенда. Характеристика процесса модификации детектора прямой.
статья, добавлен 19.01.2018Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012История появления генетических алгоритмов, области их применения: составление расписаний, задачи раскроя-упаковки, аппроксимации. Способы реализации идеи биологической эволюции в рамках генетических алгоритмов. Операторы отбора, кроссинговера и мутации.
лекция, добавлен 09.10.2013Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
автореферат, добавлен 29.03.2018Понятие генетических алгоритмов как аналитических технологий, созданных и выверенных самой природой за миллионы лет ее существования. Особенности разработки системы, генерирующей решение с помощью генетических алгоритмов, характеристика их источника.
курсовая работа, добавлен 21.10.2013Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Использование генетических алгоритмов для решения задач многокритериальной оптимизации. Операторы кроссинговера высших степеней и многородительское скрещивание. Применение генетических алгоритмов к проектированию вибраторных антенн, их характеристики.
статья, добавлен 17.01.2018Расчет положения препятствий относительно транспортного средства и желаемой реакции искусственного интеллекта. Аппроксимация функций с областями значений, которые могут иметь несколько измерений - особенность нейронной сети обратного распространения.
статья, добавлен 02.06.2021Понятие искусственных нейронных сетей, способы обработки информации человеческим мозгом. Разработка концепции гомеостатической искусственной нейронной сети на основе представлений о гомеостатических механизмах обработки информации в естественных системах.
статья, добавлен 30.05.2017Анализ исходных данных и решение задач с помощью Excel. Выполнение программных команд. Определение потенциала поставщиков и потребителей. Проверка оптимальности опорного плана. Создание экранной формы задачи. Нахождение индикаторных переменных задачи.
контрольная работа, добавлен 24.02.2014История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.
курсовая работа, добавлен 16.12.2016Решение задач классификации бинарных входных векторов с использованием искусственной нейронной сети Хэмминга. Расчет матрицы весовых коэффициентов нейронов первого слоя. Сигналы нейронной сети Хэмминга, получаемые на протяжении полного цикла расчета.
статья, добавлен 12.06.2018Рассмотрение базовых методов обнаружения разрывов яркости: методов обнаружения точек, прямой линии, контура объекта. Анализ алгоритмов обнаружения прямых линий с помощью преобразований Хафа. Выполнение моделирования этих алгоритмов средствами Matlab.
статья, добавлен 23.01.2021Понятие искусственного интеллекта, история возникновения, создатели. Общая характеристика и сущностные отличия задач, решаемых на ЭВМ с помощью методов ИИ автоматизации вычислительных процессов, от обычных, решаемых традиционными методами и способами.
лекция, добавлен 09.10.2013Табуляция функции и порядок построения графика в Excel. Формирование и настройка форм, их структура и компоненты. Нахождение корней уравнения и экстремума функции с помощью Mathcad. Механизм вычисления и представления матрицы в обеих программах.
курсовая работа, добавлен 26.09.2017Алгоритмизация адаптивного искусственного интеллекта в мультиагентных играх. Моделирование конкурентной среды интеллектуальных агентов. Исследование эффективности алгоритмов в колониях DT, ABC и в нейронной сети, обучаемой генетическим алгоритмом.
дипломная работа, добавлен 01.09.2016Нахождение максимума и минимума целевой функции задачи линейного программирования с двумя переменными графическим методом. Решение двойственной задачи и анализ полученных данных. Решение транспортной задачи с помощью надстройки MS Excel "Поиск решения".
курсовая работа, добавлен 10.12.2012Моделирование задачи многомерной аппроксимации значений критериев и обратной задачи определения входных параметров по заданным значениям критериев с помощью нейронной сети. Алгоритм реализации задачи аппроксимации. Нахождения разложения для критериев.
реферат, добавлен 03.07.2017