Численное решение уравнений

Основные особенности определения величины критической силы действующей на стержень, один конец которого закреплен. Изучение методов приближенных вычислений с заданной степенью точности. Характеристика геометрического смысла метода простой итерации.

Подобные документы

  • Основные понятия теории погрешностей и этапы решения задачи на компьютере. Численное решение скалярных нелинейных уравнений методами Гаусса, простой итерации и Гаусса-Зейделя. Численное решение задач Коши для обыкновенных дифференциальных уравнений.

    учебное пособие, добавлен 26.03.2014

  • Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.

    задача, добавлен 28.10.2017

  • Разработка методики получения приближенных аналитических решений исходных дифференциальных уравнений пограничных слоев, позволяющей получать решения практически с заданной степенью точности. Условия использования уравнений Прандтля и Польгаузена.

    статья, добавлен 31.08.2018

  • Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.

    реферат, добавлен 06.03.2023

  • Основные сведения о системах нелинейных уравнений. Понятие о линеаризованных уравнениях. Определение малой окрестности и выбор в ней начального приближения к решению. Методы простой итерации, Зейделя, Ньютона, наискорейшего спуска. Сходимость методов.

    реферат, добавлен 14.12.2010

  • Особенности изучения студентами начертательной геометрии, значение данной дисциплины. Анализ разных методов определения натуральной величины треугольника: графического (геометрического построения) и аналитического (с использованием формул и вычислений).

    статья, добавлен 10.09.2017

  • Определение абсолютной и относительной погрешности численного результата. Решение уравнений с одной неизвестной. Понятие кратного корня. Методы уточнения корней простой итерации. Решение систем линейных уравнений. Особенности интерполяции функций.

    курс лекций, добавлен 08.02.2015

  • Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.

    контрольная работа, добавлен 14.12.2014

  • Задачи численного интегрирования. Вычисление производной заданной функции, интерполяционного многочлена Ньютона. Решение дифференциальных уравнений. Вычисление приближенных значений интеграла методом треугольников, методом трапеций и методом Симпсона.

    контрольная работа, добавлен 23.12.2017

  • Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.

    курсовая работа, добавлен 10.06.2021

  • Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.

    статья, добавлен 03.03.2018

  • Изучение понятия обратимости операторов. Решение точных и соответствующих им приближенных уравнений. Обратимость аппроксимирующих операторов. Разрешимость и оценка погрешности. Исследование связи между обратимостью оператора и разрешимостью уравнения.

    курсовая работа, добавлен 22.04.2011

  • Решение задачи Коши для дифференциальных уравнений методом Милна. Использование метода для систем уравнений первого порядка или приведенных к таким. Оценка устойчивости метода и числа шагов. Практическая сторона использования. Решение 30 примеров.

    курсовая работа, добавлен 09.06.2014

  • Изучение геометрического смысла предела. Старшая степень числителя и знаменателя. Пределы с неопределенностью и метод их решения. Разложение числителя и знаменателя на множители. Использование формулы разности квадратов. Решение квадратных уравнений.

    лекция, добавлен 04.03.2014

  • Понятие метода итерации как способа численного решения математических задач. Его основные цели и порядок применения. Значение интегрированного метода трапеции, процесс оценки абсолютной погрешности. Решение системы линейных уравнений методом Гаусса.

    контрольная работа, добавлен 20.05.2013

  • Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).

    реферат, добавлен 01.11.2019

  • Применение приближенных (численных) способов нахождения корней системы матричных уравнений с большим числом неизвестных. Содержание методов простых итераций, Зейделя, релаксации, используемых в решении уравнений. Теорема сходимости итерационного процесса.

    лекция, добавлен 21.09.2017

  • Сущность и принципы использования метода Ньютона, его геометрическая интерпретация, примеры применения на практике, алгоритм решения задач. Механизм решения систем нелинейных алгебраических уравнений. Содержание и значение методов спуска и итерации.

    реферат, добавлен 31.10.2013

  • Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.

    реферат, добавлен 27.10.2019

  • Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.

    статья, добавлен 02.02.2019

  • Численное решение уравнения. Условия, наложенные на функцию. Графический метод определения корней. Метод дихотомии и процесс итераций. Первые приближения для метода касательных. Метод секущих и хорд. Сущность комбинированного метода решения уравнения.

    курсовая работа, добавлен 08.07.2012

  • Общая характеристика теоремы Больцеана-Коши. Знакомство с особенностями метода равномерного поиска и метода бисекции. Анализ основных проблем поиска интервалов, содержащих корень, с заданной степенью точности. Рассмотрение способов локализации отрезков.

    лабораторная работа, добавлен 02.10.2013

  • Особенности исследования нелинейной функции одной переменной. Рассмотрение основных операций с матрицами. Решение системы линейных уравнений. Изучение приближения таблично заданной функции. Способы определения экстремума функции двух переменных.

    курсовая работа, добавлен 19.05.2015

  • Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.

    контрольная работа, добавлен 07.06.2013

  • Рассмотрение методов исследования устойчивости разностных схем для линейных эволюционных уравнений в частных производных (гиперболического и параболического типов). Численное решение дифференциальных уравнений в частных производных параболического типа.

    курс лекций, добавлен 29.11.2020

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.