Фракталы в изобразительном искусстве
История происхождения фрактал как сложной геометрической фигуры, обладающей свойством подобия. Классические примеры геометрических фракталов. Использование двумерные стохастические фракталы при моделировании рельефа местности и поверхности моря.
Подобные документы
Фрактал как геометрическое образование, представляющее систему самоподобных фигур, расположенных закономерным образом. Фрактальные свойства в природе. Построение Снежинки Коха и фрактал раковина. Актуальность фракталов в нашей жизни и фракталы-анимация.
презентация, добавлен 09.12.2012Фракталы и математический хаос, открытие их свойств при изучении итерированных отображений. Классические фракталы (самоподобие, снежинка Коха, ковер Серпинского). Графическая реализация L-систем в качестве подсистемы вывода. Понятие хаотической динамики.
реферат, добавлен 03.10.2012Фрактальная геометрия Бенуа Мандельброта. Наиболее известные геометрические и алгебраические фракталы. Применение фракталов в экономике, механике жидкостей и газов, физике поверхностей, нефтехимии, геологии, картографии. Особенности фрактальных картин.
презентация, добавлен 11.05.2014Использование фракталов для построения обычных и фоновых изображений, для анализа состояния биржевых рынков, при моделировании нелинейных процессов. Использование фракталов как популярного инструмента у трейдеров для анализа состояния биржевых рынков.
статья, добавлен 20.07.2018Понятие фрактала, пример L-системы. Предпосылки возникновения теории фракталов. Геометрические, алгебраические и стохастические фракталы. Особенности применения теории фракталов. Фрактальные свойства экономических, социальных, биологических процессов.
курсовая работа, добавлен 27.02.2016Классификация и особенности построения некоторых геометрических фракталов. Рассмотрение фрактальных структур в природе, фрактальной графики и фрактальных картин в интерьере. Возможности применения фракталов в естественных науках, радиотехнике, финансах.
реферат, добавлен 09.04.2017- 7. Фракталы
Общее понятие о фракталах. Самоподобие как одно из основных свойств фракталов. Основные типы фракталов и их характеристики: геометрические, алгебраические и схоластические. Роль фракталов в современном мире, основные области и сферы их применения.
реферат, добавлен 11.12.2011 Термин "фрактал" в математике, история возникновения этого понятия. Классификация, виды геометрических фракталов. Построение триадной кривой Коха. Генератор кривой Пеано. Реализация геометрических фракталов с помощью языка программирования Pascal.
курсовая работа, добавлен 16.10.2013Знакомство с понятием, историей возникновения и исследованиями Бенуа Мандельброта. Представление о фракталах, встречающихся в нашей жизни. Нахождение подтверждения теории фрактальности окружающего мира. Фракталы в математике, геометрии и в реальном мире.
практическая работа, добавлен 12.07.2020Рассмотрение математического множества, обладающего свойством самоподобия. Решение проблемы нахождения радиуса и координат центра произвольной окружности при помощи компьютерных методов. Построение первых n поколений фрактала в графическом модуле.
творческая работа, добавлен 20.04.2015Термин и суть понятия "фрактал". Биогенетический закон Мюллера и Геккеля. Прямое произведение и фракталы, новые методы вычислений. Самоподобные множества с необычными свойствами в математике. Природные объекты, обладающие фрактальными свойствами.
контрольная работа, добавлен 21.05.2014- 12. Фракталы
Разные виды фракталов. Изучение природных явлений и объектов окружающего мира с точки зрения проявления в них фрактала. Возможности практического применения фрактала. Применение теории хаоса в реальном мире. Броуновское движение и его применение.
практическая работа, добавлен 02.01.2022 Приведение примеров сложных геометрических фигур, обладающих свойством самоподобия. Описание фрактальных свойств природных объектов: растений, морских животных, природных явлений. Рассмотрение игрушки "Матрешка" как фрактала в народном творчестве.
реферат, добавлен 15.03.2017История развития фрактальной геометрии. Исследование фракталов в природе и математике, составление программы моделирования сложных неевклидовых объектов, образы которых весьма похожи на природные. Моделирование фракталов на языке программирования.
научная работа, добавлен 24.09.2013Условие принадлежности точки поверхности геометрической фигуры. Проецирующее положение геометрических фигур. Построение линии пересечения геометрических фигур. Перспектива прямой линии и параллельных прямых. Рассмотрение проекции с числовыми отметками.
учебное пособие, добавлен 13.09.2017Характерные признаки фрактальных множеств. Построение Канторова множества, снежинки Коха салфетки Серпинского при помощи L-систем. Визуализация "замощение треугольниками". Описание программного обеспечения "doLsys". Способы анимации фрактальных фигур.
дипломная работа, добавлен 29.10.2024Описание цилиндра как геометрической фигуры, его виды и принципы его построения. Свойства образующих его высот и оснований. Формулы расчета объема и площади поверхности фигуры. Эллипс как сечение цилиндра. Определение площади боковой поверхности пирамиды.
презентация, добавлен 27.11.2014Исследование фракталов как математических объектов, изучение их особенностей и свойств, таких как самоподобие. Понятие дробной размерности. Канторово множество и его обобщение. Снежинка Коха, ковры Серпинского, кривая Пеано, дракон Хартера-Хейтуэя.
дипломная работа, добавлен 21.04.2011Роль геометрических фигур в жизни человека. Использование их в строительстве, математике, науке и технике. Все геометрические фигуры имеют свои образы в окружающем мире. Объемные геометрические фигуры, их определение. Возникновение термина "Геометрия".
презентация, добавлен 11.05.2023Классификация плоских и объемных фракталов, их размерность и основные принципы построения. Алгоритм визуализации в геометрические формы при помощи программы "3D моделирование". Модуль генерации точек пространства, принадлежащего трехмерному фракталу.
статья, добавлен 30.07.2017Анализ динамики реальных природных систем. Моделирование каскадных водопадов и турбулентных процессов. Самоподобие как основное характерное свойство фракталов. Понятие дробной размерности. Правила построения снежинки Коха. Салфетка и ковёр Серпинского.
реферат, добавлен 07.12.2016Модулярный дизайн детерминистических фрактальных структур в 2D пространстве. Коды, симметрия детерминистических фракталов на основе итерационной последовательности точек в 2D пространстве. Глобальная размерность детерминистических фрактальных структур.
статья, добавлен 21.06.2018Принципы формирования и модулярного строения фрактальных структур в определенном структурированном пространстве на основе инъективно полученных фракталов Вичека (FV), канторова множества F(CM(1/3)) и итерационной последовательности точек F(IC(1/2)).
статья, добавлен 21.06.2018Основные понятия правильной фигуры, их свойства, периметр, а также площадь геометрической фигуры. Основные виды правильных фигур (шестиугольник, треугольник, квадрат, пятиугольник), понятие их равенства и свойств. Задачи для урока по математике.
лекция, добавлен 14.08.2014Определение многогранников, их примеры в архитектуре (египетская пирамида), искусстве, животном мире. Их типы: тетраэдр, гексаэдр, октаэдр, икосаэдр, додекаэдр. Количество граней, ребер и вершин в данных фигурах. История правильных многогранников.
презентация, добавлен 09.04.2014