Периодические решения системы линейных функционально-дифференциальных уравнений
Система двух функционально-дифференциальных уравнений общего вида. Достаточные условия разрешимости периодической краевой задачи для этой системы в случае резонанса. Периодическая краевая задача для системы функционально-дифференциальных уравнений.
Подобные документы
Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.
презентация, добавлен 21.09.2013Понятие системы линейных алгебраических уравнений с неизвестными. Основная и расширенная матрица системы. Определение совместной и несовместной системы линейных уравнений. Пример решения системы. Вычисление алгебраических дополнений. Формулы Крамера.
лекция, добавлен 26.01.2014Исследование системы на совместность методом Гаусса. Решение системы линейных алгебраических уравнений двумя методом Крамера и средствами матричного исчисления. Решение пределов, дифференциальных уравнений, определение производных функций и интегралов.
контрольная работа, добавлен 09.04.2012Алгоритм нахождения интегральных кривых однородных уравнений первого порядка. Исследование интегральных кривых уравнения. Описание решения ряда задач, характеризующих свойства однородных дифференциальных уравнений. Методы построения интегральных кривых.
дипломная работа, добавлен 21.04.2023Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.
научная работа, добавлен 01.02.2013Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
курсовая работа, добавлен 09.07.2015Назначение, области применения, достоинства и недостатки компьютерной системы для персонального компьютера Mathematica. Введение данных и решение дифференциальных уравнений Абеля и Дарбу математически, в аналитической форме, в системе Mathematica.
курсовая работа, добавлен 04.08.2012Дифференциальные уравнения и их применение в прикладных задачах. Математическая модель численного интегрирования дифференциальных уравнений. Математическое описание зависимости концентрации. Расчет профиля температур при нестационарной теплопроводности.
дипломная работа, добавлен 19.06.2015Описание ассоциированных решений задачи Коши для систем уравнений в дифференциалах, соответствующих системам уравнений с разрывной и обобщенной правыми частями. Решение этой задачи для соответствующих им систем в прямом произведении алгебр мнемофункций.
автореферат, добавлен 19.08.2018Проведение исследования основных нелокальных краевых задач для дифференциальных и псевдодифференциальных уравнений. Характеристика важнейших преобразований Фурье по пространственным переменным. Существенная особенность изучения параболических заданий.
статья, добавлен 30.10.2016Метод Рунге-Кутты для решения как одиночных дифференциальных уравнений первого порядка, так и систем уравнений первого порядка. Исследование метода Рунге-Кутты четвертого порядка для решения дифференциальных уравнений. Программа для решения уравнения.
контрольная работа, добавлен 29.03.2012Области прикладного применения систем компьютерной математики для численных и аналитических расчетов. Возможности программы Wolfram Mathematica. Примеры решения обыкновенных дифференциальных уравнений и геометрических задач в системе Wolfram Mathematica.
статья, добавлен 16.07.2018Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.
статья, добавлен 02.02.2019Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.
контрольная работа, добавлен 06.08.2013Особенности системы дифференциальных уравнений как автономной системы для функций x (t) и y (t). Специфика картины фазовых кривых, называемой фазовым портретом системы. Анализ расположения траекторий, определяемого корнями характеристического уравнения.
курсовая работа, добавлен 29.11.2015Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
контрольная работа, добавлен 12.04.2014Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.
курсовая работа, добавлен 19.01.2016Изучение прямых изоклин системы дифференциальных уравнений. Главные способы разбиения множества изоклин, теоремы и доказательства. Нахождение параллельных между собой прямых изоклин системы. Квадратичная дифференциальная система, её состояния равновесия.
статья, добавлен 27.09.2013- 94. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Рассмотрение методов исследования устойчивости разностных схем для линейных эволюционных уравнений в частных производных (гиперболического и параболического типов). Численное решение дифференциальных уравнений в частных производных параболического типа.
курс лекций, добавлен 29.11.2020Случай переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Решение задач методами краевых условий, прогонки С.К. Годунова, половины констант. Применяемые формулы построчного ортонормирования.
научная работа, добавлен 18.10.2010Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
реферат, добавлен 27.10.2019Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.
курс лекций, добавлен 19.09.2015Основные численные методы решения краевой задачи: метод стрельбы, конечно-разностный метод. Примеры задач и их реализация в среде MathCad. Сравнение результатов вычислений. Пример решения нелинейного ОДУ (обыкновенного дифференциального уравнения).
курсовая работа, добавлен 05.06.2015