Бесконечные произведения
Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.
Подобные документы
Определение предела функции по Коши, понятие непрерывности в точке. Множества Коши в Евклидовом пространстве. Решение неравенства Коши для бесконечных последовательностей. Неравенства треугольника. Комплексные пространства со скалярным произведением.
курсовая работа, добавлен 09.12.2010Изучение строения подкласса класса абелевых групп. Исследование особенностей расчета рациональных чисел. Внешняя характеристика пространств и бикомпактов. Определение подпрямой суммы делимых рациональных групп и их бесконечных циклических подгрупп.
статья, добавлен 25.11.2016Функция – одно из основных понятий во всех естественнонаучных дисциплинах. Способы задания функций. Задача рассматриваемой в работе функции через бесконечный ряд. Дзета-функция Римана и ее применение в теории чисел. Дальнейшее исследование данной функции.
реферат, добавлен 12.03.2010Основные понятия числовых рядов и их важные свойства. Необходимый признак сходимости числового ряда. Установление сходимости и расходимости ряда помощью достаточных признаков. Интегральный признак Коши. Абсолютная и условная сходимость числовых рядов.
презентация, добавлен 20.12.2015Изучение дифференциального и интегрального исчисления. Анализ применения Дзета-функции Римана в теории чисел. Определение понятия функции: закона, по которому каждому элементу множества X ставится в соответствие один или несколько элементов множества Y.
курсовая работа, добавлен 30.10.2010Рассмотрение знаменитой пятой гипотезы Римана, высказанной им еще в середине XIX века. Голоморфное продолжение дзета-функции на выколотую комплексную плоскость за исключением простого полюса. Представление любой функции в виде конечной суммы функций.
статья, добавлен 27.05.2018Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.
конспект урока, добавлен 03.02.2018Вещественная функция, гармоническая в круге. Первоначальное изучение граничного поведения. Формула Коши-Грина, обобщение в случае единичного круга. Интегральное представление гармонических функций. Бесконечные числовые произведения чисел, их сходимость.
курс лекций, добавлен 24.09.2017Определения, понятия и элементарные свойства сходящихся числовых рядов. Необходимое условие и достаточные признаки сходимости знакоположительного ряда. Признаки сравнения; признаки Даламбера, Коши. Исследование знакопеременных рядов; теорема Лейбница.
курс лекций, добавлен 30.07.2017Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.
шпаргалка, добавлен 27.10.2013Определение сходимости степени ряда. Применение признаков Даламбера и Коши. Использование формулы Тейлора при аппроксимации и доказательстве большого числа теорем в дифференциальном исчислении. Вычисление значений показательной и логарифмической функции.
контрольная работа, добавлен 16.12.2013Подробность и лаконичность произведений Л.Н. Толстого и А.П. Чехова. Построение вариационных рядов по признакам длины слов в произведениях Чехова и Толстого. Анализ произведений Толстого и Чехова с помощью описательного метода математической статистики.
курсовая работа, добавлен 19.11.2015Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.
лекция, добавлен 22.12.2013Скалярное произведение векторов как число, равное сумме произведений соответствующих компонент этих векторов. Скалярное произведение товаров как их общая стоимость. Свойства скалярного произведения. Условие ортогональности. Неравенство Коши-Буняковского.
презентация, добавлен 21.09.2013Характеристика оценки меры иррациональности значений дзета-функции Римана в целых точках. Проведение исследования обобщенного интеграла В.Н. Сорокина с произвольным набором параметров. Особенность применения преобразований к сохранённым массивам.
статья, добавлен 27.05.2018Некоторые сведения о последовательностях. Понятия, свойства числовых, функциональных, знакопеременных, степенных рядов. Признаки их сходимости: сравнения, Даламбера, Коши, Лейбница. Теорема Абеля. Разложение основных элементарных функций в степенные ряды.
курс лекций, добавлен 22.06.2014Николай Лобачевский, один из гениальных математиков, краткая биография ученого. Области применения геометрии Лобачевского в науке. Лобачевский - автор фундаментальных работ в области алгебры, теории бесконечных рядов и приближенного решения уравнений.
реферат, добавлен 07.06.2021Рассмотрение теории функций комплексной переменной. Формулировка необходимого условия дифференцируемости функции комплексного переменного по условию Коши-Римана. Теорема Коши для многосвязной области. Формула среднего значения. Ряды, их виды.
шпаргалка, добавлен 02.03.2014Основы теории конечных и бесконечных множеств. Основные классы равномощных множеств. Выведение понятия мощности множества на основе равномощности. Сравнение множеств, их объединение, пересечение, разность и дополнение. Сущность аксиоматической теории.
контрольная работа, добавлен 25.06.2012Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.
статья, добавлен 26.04.2019Изучение теории рядов и применения их для решения различного типа задач. Составление последовательности частичных сумм порядка. Анализ интегрального признака Коши и интегрирования дифференциальных уравнений. Определение радиуса сходимости степенной цепи.
дипломная работа, добавлен 28.02.2017Множество чисел как упорядоченное множество бесконечных десятичных дробей. Изучение ограниченных и бесконечно малых последовательностей. Изучение первообразной функции и неопределенного интеграла. Дифференциальное исчисление функций многих переменных.
курс лекций, добавлен 11.05.2015- 23. Числовые ряды
Теоретический обзор числовых рядов: их определение и сходимость. Основные свойства числовых рядов: признаки сходимости и расходимости. Характеристика знакочередующихся и знакопеременных рядов. Признак сходимости Лейбница. Ряды с положительными членами.
методичка, добавлен 02.07.2014 Определение евклидова пространства. Длина вектора и угол между ними. Векторное неравенство Коши-Буняковского. Особенности использования неравенства Коши-Буняковского при решении задач по алгебре. Примеры применения скалярного произведения векторов.
курсовая работа, добавлен 15.12.2010Описано свойство последователей, следующих за натуральным рядом (первых бесконечных последователей типа PN), показано, что эти последователи и их всевозможные взаимные степени – счётны. Указано на приложение этого свойства к основаниям теории меры.
статья, добавлен 26.04.2019