Софизмы и парадоксы в математике
История формирования и понятие математических софизмов и их виды: алгебраический, геометрический, арифметический и логический. Классификация парадоксов и их причины (теория Банаха-Тарского, задача о треугольнике, анализ бесконечно малых величин).
Подобные документы
Парадокс как ситуация, которая может существовать в реальности, но не имеет логического объяснения. Классификация и описание математических парадоксов. Сущность парадоксов: лжеца, Эпименида, Платона и Сократа, Пиноккио, исчезновения клетки, Галилея.
презентация, добавлен 29.01.2015Формульное выражение и свойства бесконечно малых функций, распространяемых на случаи алгебраической суммы конечного числа. Методы вычисления бесконечно больших величин. Изучение теоремы о пределах. Способы подстановки предельного значения аргумента.
лекция, добавлен 07.07.2015Многообразие парадоксов и их причины. Задача о треугольнике. Условия задачи, сформулированной М. Гарднером, суть парадокса Симпсона ("парадокс объединений") и его математическое доказательство. Бесконечная пластинка и тело, образованное ее вращением.
реферат, добавлен 21.10.2013Актуальность решения текстовых задач в современной методике преподавания математики. Понятие и роль текстовых задач в курсе алгебры. Психолого-педагогические основы формирования умения решать данные задачи. Алгебраический и геометрический метод решения.
презентация, добавлен 01.03.2015Необходимость существования парадоксальности. Изучение парадоксов Галилея, Банаха и Рассела, применение их в науке. Решение алгебраических уравнений с многомерной системой координат. Логика и математика комплексных чисел, их противоречивая природа.
реферат, добавлен 12.03.2016Определение понятия предела функции для любой бесконечно большой последовательности. Характеристика ограниченности функций и арифметических операций, при условии наличия пределов. Изучение свойств бесконечно малых и больших математических функций.
лекция, добавлен 29.09.2013Проблема классификации парадоксов (анализ). Классификация парадоксов на группы А и В. Фиксация "пограничные парадоксы", которые демонстрируют проблематичность Рамсеевой классификации. Экспликация парадоксов. Парадокс наименьшего неопределимого ординала.
статья, добавлен 30.09.2020Многообразие парадоксов и их причины (парадоксы Греллинга и Бери). Парадоксы как петли (литографии К. Эшера). Абстракции и иерархические языки. Парадоксы, связанные с теорией множеств, открытия Кантора и парадокс Рассела, кризис основ математики.
реферат, добавлен 29.03.2009Математический софизм как удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. Значение решения любого рода математических задач, а в особенности нестандартных. Софизм "Все числа равны между собой".
статья, добавлен 25.03.2019Многообразие парадоксов и их основные причины: парадокс Греллинга, Бери и пр. Парадоксы как петли (парадокс Рассела (о парикмахере), Маннури (о мэре) и пр.). Абстракции и иерархические языки, парадоксы с множествами. Парадоксы и развитие математики.
контрольная работа, добавлен 12.12.2016Способ обоснования существования актуальных бесконечно малых чисел, основанный на понятии двузначной меры. Аксиоматический подход к понятию расширенной числовой прямой. Арифметика бесконечно малых чисел. Основные теоремы дифференциального исчисления.
монография, добавлен 03.07.2014Достижения Ньютона в математике: нахождение путем общего разложения бинома с произвольным показателем степени, разработка метода флюксий для анализа бесконечно малых величин. Изложение в журнале "Труды ученых" Лейбницем основ дифференциального исчисления.
реферат, добавлен 30.06.2011Изучение истории формирования и развития математических учений в странах Азии и Востока. Появление арабской нумерации. Открытие арифметических действий, дробей и задач. Алгебра и квадратные уравнения, геометрические построения и теория чисел (отношений).
реферат, добавлен 18.11.2014Исследование понятия дифференциала функции, его свойств и геометрического смысла. Изучение теоремы о связи бесконечно малых величин с пределами функций. Определение приращения и дифференциала независимой переменной. Примеры решения задач с производными.
презентация, добавлен 21.09.2013Понятие и сущность текстовой задачи. Вспомогательные модели, используемые в начальном обучении математики. Решение системы уравнений алгебраическим способом. Использование методов текстовых арифметических задач на уроках математики в начальных классах.
методичка, добавлен 28.03.2017Методика обучения решению математических задач арифметическим способом. Введение иррациональных чисел и показ способов их изображения на числовой прямой. Развитие умений в представлении обыкновенных дробей в виде приближенного значения десятичной дроби.
контрольная работа, добавлен 14.06.2018Геометрический и арифметический ряды. Свойства равномерно сходящихся рядов. Необходимый признак сходимости рядов. Интегральный признак сходимости ряда, ряд Дирихле. Знакочередующиеся и знакопеременные ряды. Абсолютная и условная сходимость рядов.
шпаргалка, добавлен 20.06.2009Софизм - рассуждение, кажущееся правильным, но содержащее скрытую логическую ошибку и служащее для придания видимости истинности ложному заключению. Парадоксы на примере математической науки. Преднамеренное, сознательное нарушение правил логики.
презентация, добавлен 17.02.2015Понятие математической функции. Основные элементарные функции. Поиск области определения функций. Предел числовой последовательности, а также функции в бесконечности и точке. Вычисление пределов. Применение бесконечно малых величин к вычислению пределов.
методичка, добавлен 21.03.2013Термин "фрактал" в математике, история возникновения этого понятия. Классификация, виды геометрических фракталов. Построение триадной кривой Коха. Генератор кривой Пеано. Реализация геометрических фракталов с помощью языка программирования Pascal.
курсовая работа, добавлен 16.10.2013Сравнение бесконечно малых функций, их определение. Некоторые эквивалентные бесконечно малые функции при x>0. Раскрытие неопределенностей. Свойства функций, непрерывных на отрезке. Основные соотношения, их доказательство и примеры решений задач.
презентация, добавлен 16.10.2014Перекрестный и сравнительный анализ влияние предел на математику. Понятие бесконечно малых и бесконечно больших пределов, техники вычисления. Пределы последовательностей, важность пределов в математическом анализе. Понимание непрерывности и разрывов.
статья, добавлен 13.12.2024- 23. Число "е"
Анализ последовательности числа с общим членом, согласно формуле суммы бесконечно убывающей геометрической последовательности. Понятие функций одной переменной некоторых числовых множеств. Виды элементарных функций и их геометрическое содержание.
лекция, добавлен 29.09.2013 Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.
презентация, добавлен 18.03.2016Изучение математических моделей объектов, процессов и зависимостей, решаемых дискретной математикой. Анализ элементов теории множеств. Понятие и применение математической логики. Определение алгебраических операций. Теория графического представления.
учебное пособие, добавлен 19.12.2012