История математических констант числа "пи" и "е"
Описание удивительной таблицы натуральных логарифмов, определенных из кинематических соображений. Начало математического анализа в комплексной области, теории функций комплексного переменного. Точное определение иррациональных и трансцендентных чисел.
Подобные документы
Применение функций комплексного переменного в физике. Использование мнимого числа и функции от комплексного переменного в науках. Решение линейных дифференциальных уравнений с постоянными коэффициентами. Геометрическое истолкование комплексных чисел.
статья, добавлен 25.12.2017История возникновения логарифмов. Общие приемы решения задач с неизвестными величинами. Идея логарифма, то есть идея выражать числа в виде степени одного и того же основания Михаила Штифеля. Признание общего понятия иррациональных и трансцендентных чисел.
статья, добавлен 09.06.2017История математических исследований простых чисел как натуральных чисел, имеющих два различных натуральных делителя - единицу и самого себя. Представление простых чисел в виде значений квадратных многочленов. Описание спирали простых чисел С.М. Улама.
статья, добавлен 28.03.2019Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.
реферат, добавлен 25.12.2014Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.
учебное пособие, добавлен 04.02.2012Исследование онтологического статуса иррациональных чисел в контексте идеалов построения математического знания в четырёх парадигмах математической онтологии. Специфики в трактовке статуса математических объектов при изменении гносеологических традиций.
статья, добавлен 27.09.2013Краткая история возникновения идеи логарифмов как математических чисел, применения которых, упрощает сложные операции арифметических вычислений. Изобретение логарифмов и их развитие от времен Архимеда до наших дней. Логарифмы и вычислительная техника.
презентация, добавлен 23.06.2012Геометрическое представление комплексного числа. Модуль и аргумент в математике. Формула Муавра и правила извлечения корней. Алгебраическая, тригонометрическая и показательная формы комплексных чисел. Рассмотрение функций комплексного переменного.
реферат, добавлен 15.10.2021Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.
реферат, добавлен 08.02.2017Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.
реферат, добавлен 27.03.2015Зарождение счета в древности. Появление систем счисления. Письменная нумерация у древних народов. История возникновения понятия натурального числа. Счет как основа арифметики. Натуральный ряд чисел. Функции натуральных чисел. История возникновения нуля.
реферат, добавлен 29.01.2012Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.
лекция, добавлен 29.09.2014Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.
реферат, добавлен 15.12.2016Характеристика основных этапов развития теории чисел, вложение ученого К. Гаусса. Рассмотрений главных свойств алгебраических полей. Понятие трансцендентных чисел на основании исследований Ж. Лиувилля. Описание простого алгебраического расширения поля.
реферат, добавлен 05.01.2014Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.
контрольная работа, добавлен 30.10.2010Определение сущности числа, история его происхождения. Основные функции количественных натуральных числовых единиц. Система записи чисел в Древнем Риме и Вавилоне. Рассмотрение особенностей счета у народа майя. Славянские цифровые знаки-буквы с титлами.
презентация, добавлен 19.01.2015Особенности решений уравнений с комплексным переменным. Этапы развития теории функций комплексного переменного. Причины возникновения комплексных чисел. Основные способы решения алгебраических уравнений. Развитие техники операций над комплексными числами.
реферат, добавлен 12.09.2012Основы линейной, векторной алгебры, аналитической геометрии и математического анализа. Криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления.
курс лекций, добавлен 19.11.2014Общее понятие и признаки комплексного числа. Тригонометрическая форма комплексного числа. Произведение двух комплексных чисел, формула его вычисления. Корни n-ой степени комплексного числа. Действительная и комплексная степень комплексного числа.
реферат, добавлен 21.08.2017История возникновения и развития логарифмов. Таблицы Иоста Бюрги. Логарифмическая спираль. Связь логарифмов и музыки. Применение логарифмов для познания окружающего мира. Логарифмическая зависимость между величиной ощущения и порождающего его раздражения.
контрольная работа, добавлен 16.11.2013Цель работы – проанализировать натуральные числа с математической, философской, магической точек зрения. Частота появления натуральных чисел в математических задачах, головоломках, в различных литературных жанрах. Различные способы счета в древности.
реферат, добавлен 14.03.2022Правила аксиоматического построения математических теорий. Аксиоматическое построение системы натуральных чисел. Аксиомы Пеано, метод математической индукции. Умножение целых неотрицательных чисел в количественной теории, таблица и законы умножения.
реферат, добавлен 10.01.2017История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011Рассмотрение теории функций комплексной переменной. Формулировка необходимого условия дифференцируемости функции комплексного переменного по условию Коши-Римана. Теорема Коши для многосвязной области. Формула среднего значения. Ряды, их виды.
шпаргалка, добавлен 02.03.2014Открытие логарифмов, первые логарифмические таблицы. Понятие о логарифмировании как действии, обратном возведению в степень. Практическое применение десятичных логарифмов. Вычисление логарифмов по основанию. Понятие десятичного и натурального логарифма.
презентация, добавлен 22.12.2014