Некоторые замечательные кривые

Рассмотрение особенностей построения замечательных кривых. Вид уравнения циссиоды Диоклеса в прямоугольной декартовой системе. Определение и построение уравнения кривой лемнискаты Бернулли. Построение уравнений и кривых кардиоиды и овала Кассини.

Подобные документы

  • Рассмотрение вопроса разновидностей замечательных кривых и способов их применения в различных областях жизнедеятельности. Выявление доли населения, владеющего информацией об основных кривых. Определение отличительных особенностей основных искривленных.

    статья, добавлен 25.01.2021

  • Канонические и параметрические уравнения кривых второго порядка, таких как эллипс, гипербола и парабола, их основные свойства. Приведение уравнения кривой второго порядка к каноническому виду. Уравнения кривых второго порядка в полярных координатах.

    методичка, добавлен 06.02.2013

  • Алгоритм нахождения интегральных кривых однородных уравнений первого порядка. Исследование интегральных кривых уравнения. Описание решения ряда задач, характеризующих свойства однородных дифференциальных уравнений. Методы построения интегральных кривых.

    дипломная работа, добавлен 21.04.2023

  • История изучения плоских кривых. Особенности формы кривой и способов ее образования. Классификация плоских кривых. Канонические уравнения эллипса, гиперболы и параболы, свойства кривых, изучаемые в 9–11 классах. Цели и задачи факультативных занятий.

    дипломная работа, добавлен 22.04.2011

  • Описание построения и расчет формул основных математических кривых: декартов лист, лемниската Бернулли, логарифмическая спираль, спираль Архимеда, циклоида, эпициклоида, гипоциклоида, дельтоида, астроида, овал Кассини, строфоида, трактриса, кардиоида.

    курсовая работа, добавлен 04.02.2014

  • Теория конических сечений. Задача о квадратуре сегмента параболы. Исследование геометрических свойств кривых. Декартов лист, кривые третьего порядка. Уравнение строфоиды в полярной системе координат. Овалы Кассини, улитка Паскаля, лемниската Бернулли.

    реферат, добавлен 15.10.2012

  • Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.

    контрольная работа, добавлен 22.12.2019

  • Характеристика кривой линии как множества точек пространства, координаты которых являются функциями одной переменной. Определение длины отрезка кривой. Изучение особенностей алгебраических, трансцендентных кривых. Анализ особенностей плоских кривых линий.

    реферат, добавлен 22.12.2015

  • Уяснение физического смысла уравнения Бернулли. Определение потерь напора в трубопроводе переменного сечения. Способы измерения средней и локальной скоростей движения жидкости. Описание установки для демонстрации уравнения Бернулли, построение диаграммы.

    лабораторная работа, добавлен 21.11.2018

  • Определение и свойства эллипса, гиперболы и параболы. Фокальные радиусы точек. Система декартовых прямоугольных координат. Уравнения директрис эллипса. Канонические уравнения эллипса, гиперболы и параболы. Определение уравнений и кривых второй степени.

    реферат, добавлен 07.01.2012

  • Кривые второго порядка: эллипс, гипербола, парабола. Вывод их канонических уравнений, исследование формы и параметры: полуоси, фокусное расстояние, эксцентриситет. Оптическое свойство кривых и исследование неполного уравнения кривой второго порядка.

    курс лекций, добавлен 26.12.2010

  • Сущность построения аксонометрических проекций. Прямоугольная, косоугольная аксонометрия. Общие сведения о многогранниках. Построение проекций многогранника, развертка. Сведения о кривых поверхностях. Построения проекций кривых поверхностей и развертки.

    реферат, добавлен 13.03.2014

  • Понятие и сущность кривой второго порядка, определение координат центра и радиуса окружности. Специфика и описание эллипса, построение декартовой системы координат. Характеристика канонического уравнения гиперболы и параболы, их отличительные черты.

    лекция, добавлен 09.07.2015

  • Способы образования кривых линий как траекторий последовательных положений движущейся точки. Проведение касательных и нормалей к плоским кривым. Кривые линии, построенные при помощи центроид - рулетты, их виды. Примеры замечательных плоских кривых линий.

    контрольная работа, добавлен 21.02.2013

  • Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.

    шпаргалка, добавлен 10.09.2009

  • В работе рассматривается способ формообразования кривых с помощью биквадратичного преобразования Г4, где прообразом задается окружность. Для получения кривых различной формы соответственно будет изменяться расположение прообраза-окружности на плоскости.

    статья, добавлен 16.02.2019

  • Построение в прямоугольной системе координат заданного треугольника. Нахождение внутреннего угла треугольника. Составление уравнения медианы и уравнения высоты. Вычисление производных заданных функций. Исследование заданных функций, построение графика.

    контрольная работа, добавлен 19.10.2012

  • Рассмотрение алгоритма полного исследования функции, теоретических результатов по каждому пункту алгоритма. Разбор стандартных примеров исследования функций и построения графиков. Определение особенностей построения параметрически заданных кривых.

    методичка, добавлен 14.09.2015

  • Особенности системы дифференциальных уравнений как автономной системы для функций x (t) и y (t). Специфика картины фазовых кривых, называемой фазовым портретом системы. Анализ расположения траекторий, определяемого корнями характеристического уравнения.

    курсовая работа, добавлен 29.11.2015

  • Способы получения уравнения касательной. Определение нормали и инвариантов плоской кривой. Построение соприкасающихся и спрямляющихся плоскостей. Выражение кривизны и кручения через произвольный радиус-вектор. Параметрические уравнения поверхности.

    лекция, добавлен 01.09.2017

  • Общая теория кривых второго порядка. Определение зависимости типа кривой от параметра с помощью инвариантов. Определение эксцентриситета, фокусов, директрис, асимптот данной кривой второго порядка. Построение и исследование поверхности второго порядка.

    курсовая работа, добавлен 22.04.2011

  • Рассмотрение линейных дифференциальных уравнений первого порядка. Методы вариации постоянной, использование интегрирующего множителя. Порядок приведения уравнения Риккати к формуле Бернулли. Выявление проблем в применении дифференциального исчисления.

    курсовая работа, добавлен 16.12.2014

  • Свойства конических сечений и решение с их помощью задач. Содержательное исследование дельтоида в работах ученых. Замечательные кривые и их качества. Особенности логарифмической спирали. Период колебаний точки, скользящей по перевёрнутой циклоиде.

    курсовая работа, добавлен 08.04.2014

  • Исследование формы данной поверхности методом сечений и построение сечения. Анализ кривой второго порядка. Нахождение фокусов, директрис, эксцентриситета и асимптот данной кривой второго порядка. Вывод уравнения осей канонической системы их координат.

    курсовая работа, добавлен 30.10.2010

  • Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Построение фазового портрета поведения кривых однородной системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами на плоскости.

    реферат, добавлен 29.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.