Элементарная теория вероятностей
Конечные вероятностные модели. Случайные переменные, среднее и дисперсия. Задачи о спичечных коробках, о разорении игрока, о планировании эксперимента, о наибольшей дисперсии. Двоичные марковские последовательности. Случайное блуждание по плоской решетке.
Подобные документы
Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.
курс лекций, добавлен 24.04.2015Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.
контрольная работа, добавлен 25.01.2015Непрерывные случайные числа, функция распределения вероятности. Вычисление математического ожидания функции дискретной случайной величины. Дисперсия и стандартное отклонение. Конфликт между несмещенностью и эффективностью. Среднеквадратичная ошибка.
презентация, добавлен 26.01.2015Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.
контрольная работа, добавлен 27.11.2017Элементарная теория вероятностей. Условная вероятность и независимость событий. Случайные величины и функции распределения. Предельные теоремы в схеме испытаний Бернулли. Проблема статистического вывода, методы оценки параметров. Доверительные интервалы.
курс лекций, добавлен 15.09.2011Случайные события и вероятность. Теорема сложения вероятностей для несовместных событий. Формула Байеса. Основные законы распределения дискретных случайных величин. Формула Бернулли. Интегральная теорема Лапласа. Математическое ожидание, дисперсия.
курс лекций, добавлен 08.12.2015Понятие теории вероятностей, ее предмет. Возможность применения методов теории вероятностей к изучению статистических закономерностей. Математическое ожидание и дисперсия. Проявление предельных теорем при формальном изложении теории вероятностей.
контрольная работа, добавлен 01.08.2017Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.
контрольная работа, добавлен 05.11.2016Теория вероятностей как математическая наука, позволяющая находить вероятности случайных событий, связанных каким-либо образом. Ее предмет и основные понятия, история возникновения. Теоремы: сложения вероятностей, предельная; теория случайных процессов.
реферат, добавлен 26.02.2010Среднее квадратическое отклонение дискретной случайной величины по известному закону её распределения. Определение дифференциальной функции распределения (плотности вероятности), математического ожидания и дисперсии непрерывной случайной величины.
контрольная работа, добавлен 23.03.2014Типовые вероятностные задачи энергетического характера. Определение вероятностей случайных событий. Основные теоремы теории вероятностей. Законы распределения случайных величин, числовые характеристики их функций. Случайные явления, события и величины.
учебное пособие, добавлен 15.06.2015Исследование конечных, непрерывных и дискретных вероятностных пространств. Корреляционная теория. Закон больших чисел. Экспоненциальные полиномы и неравенства. Формулы полной вероятности и Байеса. Классические предельные теоремы. Дисперсия и энтропия.
учебное пособие, добавлен 25.11.2013Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.
доклад, добавлен 13.03.2022Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.
курс лекций, добавлен 29.09.2014Математическое ожидание, дисперсия, среднее квадратичное отклонение. Биноминальный закон распределения. Теория массового обслуживания. Закон больших чисел и теорема Бернулли. Вероятность попадания на малый интервал времени двух или более событий.
лекция, добавлен 29.06.2016Теоретические аспекты понятия "вероятностные пространства". Функции и типы распределения, их числовые характеристики и особенности преобразования случайных величин. Случайные процессы с непрерывным временем: общие определения и процесс Пуассона.
курс лекций, добавлен 20.12.2012Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.
задача, добавлен 20.11.2015Свойства плотности распределения вероятностей непрерывной случайной величины. Характеристика особенностей математического ожидания. Основы расчета плотности распределения. Рассмотрение аспектов определения дисперсии и среднего квадратического отклонения.
курсовая работа, добавлен 09.06.2014Основные понятия теории вероятностей. Закон распределения дискретной случайной величины. Числовые характеристики дискретных случайных величин. Свойства и вычисления дисперсии. Условное математическое ожидание. Закон больших чисел. Неравенство Чебышева.
курс лекций, добавлен 02.09.2016Математическое ожидание случайной величины. Плотность распределения вероятностей дискретной случайной величины. Функция распределения вероятностей. Дисперсия случайной величины. Кумулянты и характеристическая функция. Сингулярные случайные величины.
курсовая работа, добавлен 21.05.2016Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.
учебное пособие, добавлен 25.11.2013Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.
задача, добавлен 24.08.2015Общее число возможных элементарных исходов испытания, его равенство числу способов. Вероятность правильного оформления счета на предприятии. Формула полной вероятности. Поиск математического ожидания и дисперсии. Функция распределения вероятностей.
контрольная работа, добавлен 28.03.2015Одновременное варьирование всех факторов по определенному правилу и представление математической модели в виде линейного полинома как особенность факторного эксперимента первого порядка. Методика оценки однородности дисперсии по критерию Кохрена.
лабораторная работа, добавлен 28.09.2016Теория вероятности, её характеристика. Математическая статистика, сущность эмпирической функции распределения, построение графика. Нахождение доверительного интервала, выборочной дисперсии и её несмещённой оценки. Закон распределения случайной величины.
курсовая работа, добавлен 22.09.2014