Применение семантической нейронной сети для определения эмоциональной окраски текста
Параметризация свёрточной нейронной сети для осуществления семантического анализа текста и определения его эмоциональной окраски. Архитектура сети, её обучение и тестирование с использованием объектно-ориентированного языка Python и библиотеки Keras.
Подобные документы
Создание баз с неопределенными твитами и твитами с рекламой. Реализация и обучение свёрточной нейронной сети, методы классификации текстов по их тональности. Используемый функционал на языке программирования Python, реализация и обучение Word2Vec.
дипломная работа, добавлен 28.10.2019Обзор технологии Text Mining. Алгоритмы для многоклассовой классификации текстов для выделения тега. Моделирование нейронной сети с использованием среды программирования Python для анализа данных и построения предсказательных моделей и библиотек.
дипломная работа, добавлен 07.09.2018Разработка чат-бота для поиска текстов судебных решений. Рассмотрение механизма предварительной обработки текста запроса. Классификация запросов на естественном языке, перевод текста в векторное представление. Проектирование и тестирование нейронной сети.
статья, добавлен 24.02.2019Анализ предметной области. Технологии классификации текстовых данных. Диаграмма прецедентов системы определения категорий тендеров. Проектирование архитектуры системы определения категорий тендеров. Формирование обучающих выборок для нейронной сети.
дипломная работа, добавлен 28.11.2019Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.
статья, добавлен 26.04.2019Архитектура нейронной сети, предназначенной для анализа частичных разрядов в электротехническом оборудовании. Этапы проектирования сети: выбор слоев, функций активации, механизмов регуляризации и оптимизации. Алгоритмы точного анализа частичных разрядов.
статья, добавлен 14.12.2024Решение задач классификации бинарных входных векторов с использованием искусственной нейронной сети Хэмминга. Расчет матрицы весовых коэффициентов нейронов первого слоя. Сигналы нейронной сети Хэмминга, получаемые на протяжении полного цикла расчета.
статья, добавлен 12.06.2018Составление базы данных почасового электропотребления. Адаптация входных данных для обучения искусственной нейронной сети. Выбор алгоритма обучения нейронной сети. Выбор архитектуры нейронной сети. Трудности для прогнозирования электропотребления.
статья, добавлен 27.07.2017Особенности применения нейронной сети с использованием библиотеки OpenCV для распознавания эмоций. Обучение нейронной сети, распознавание лиц из базы данных Yale Facesс помощью обучающего набора данных в рамках авторского проекта "Сурдотелефон".
статья, добавлен 25.02.2019Применение модуля программы, спроектированного на основе сверточной нейронной сети. Исследование способности нейронной сети к обучению на небольшом наборе данных в задаче классификации оружия на изображениях. Анализ результатов тестирования программы.
статья, добавлен 17.02.2019- 11. Обращение операторов в нелинейной теории оболочек с помощью нейронной сети и генетического алгоритма
Применение нейронной сети для идентификации функции нагрузки тонкостенной оболочки по результатам наблюдений. Обоснование возможности аппроксимации зависимости между результатами наблюдений и неизвестными функциями обратных задач с помощью нейронной сети.
статья, добавлен 27.09.2016 Исследование решения задачи автоматического распознавания коридоров набивных стеллажей вилочными погрузчиками с использованием нейронной сети. Описания принципа работы и структуры нейронной сети. Проверка работоспособности построенной нейронной сети.
статья, добавлен 25.02.2019Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012- 14. Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
статья, добавлен 19.06.2018 Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024Задачи для определения оптимальной модели нейронной сети. Характеристика общей модели нейронной сети. Сравнение различных алгоритмов поиска оптимального пути. Эффективность пчелиного алгоритма в решении задачи исследования и патрулирования местности.
статья, добавлен 08.03.2019- 17. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 Топологии нейронной сети: биологический нейрон, функции активации, закономерности обучения. Существующие архитектуры и их сравнительная характеристика. Многослойный перцептрон нейронной сети, особенности ее использования для динамических систем.
отчет по практике, добавлен 18.02.2019Характеристика процесса построения простейшей нейронной сети в пакете neuralnet. Анализ алгоритма подготовки данных на примере набора данных iris. Описание процесса обучения нейронной сети. Оценка качества классификации данных полученной нейронной сетью.
статья, добавлен 28.10.2020Распознавание символов по скелетному изображению, использование нейронной сети. Вычисление набора признаков скелета символа, его идентификации по результатам обучения нейронной сети. Устойчивость алгоритма к искажениям символов и параметрам шрифта.
статья, добавлен 25.09.2012Характеристика проблемы загрязнения атмосферного воздуха. Анализ данных, снятых с датчика концентрации веществ в атмосферном воздухе. Разработка нейронной сети для определения степени загрязнения воздуха. Использование языка программирования Python.
статья, добавлен 19.02.2019Применение нечеткой нейронной сети на основе алгоритма Сугено путем аппроксимации управляющего напряжения, как функции координат системы, для реализации терминального управления. Описание базы правил и функции принадлежности, результаты применения сети.
статья, добавлен 21.02.2013Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016Изучены вопросы формирования массива данных для построения искусственной нейронной сети, предназначенной для поиска взаимосвязей между социальными и экономическими параметрами развития регионов России. Исследования в области региональной компаративистики.
статья, добавлен 01.09.2021Процесс формирования параметров изменяемого пользовательского интерфейса. Возможность применения методов нейронных сетей для обработки характеристик и классификации категорий пользовательских интерфейсов; структура искусственной нейронной сети.
статья, добавлен 08.03.2019