Применение квадратичных функций Ляпунова при решении прикладных динамических задач
Определение момента окончания переходного процесса при изменении параметров непрерывной динамической системы на основе применения метода Ляпунова, основанного на оценивании областей притяжения состояний равновесия. Проблема построения функции Ляпунова.
Подобные документы
Вопрос об изложении темы "Построение функций Ляпунова" раздела "Теория устойчивости" в курсах, посвященных динамике систем, дифференциальным уравнениям, для студентов математических и технических специальностей. Методика построения функций Ляпунова.
статья, добавлен 07.08.2020Задача стабилизации для нелинейной неуправляемой по первому приближению системы. Построение стабилизирующего управления на основе метода функции Ляпунова, описание области притяжения. Метод замены фазовых координат. Система со степенью нелинейности.
статья, добавлен 30.10.2016Визначення основних умов використання знакозмінних функцій Ляпунова для дослідження обмеженості рухів динамічних систем. Розробка нового методу дослідження нестійкості на базі співвідношень векторного аналізу та критерію відсутності періодичних рухів.
автореферат, добавлен 27.07.2014Побудова оптимальних оцінок множин початкових даних та фазових обмежень для дискретних систем за допомогою методу функцій Ляпунова. Визначення теореми про практичну стійкість. Головна особливість концепцій первинних умов у вигляді кулі та еліпсоїда.
статья, добавлен 07.11.2016Исследование обобщенного анализа адаптивного безынерционного алгоритма, асимптотически устойчивых и относительно крупных неучтенных возмущений. Описание синтеза основанного на методе функций Ляпунова. Расчет элементов матрицы настраиваемых параметров.
лекция, добавлен 30.09.2015Система с постоянной положительной матрицей. Линейная функция Ляпунова. Прикладные задачи с положительными переменными. Условие устойчивости общих линейных систем. Траектории агентов в притягивающем параллелепипеде. Функция Ляпунова для уравнения.
статья, добавлен 11.01.2018Послідовності незалежних випробовувань. Числові характеристики, математичне сподівання та дисперсія випадкових величин. Функції випадкового аргументу, закон її розподілу. Закон великих чисел. Теореми Чебишева та Бернулі. Поняття про теорему Ляпунова.
реферат, добавлен 05.05.2011Наукова діяльність великого математика О.М. Ляпунова. Харківський період наукової діяльності 1885–1902 років та період у Петербурзі 1902–1918 років. Перші кроки викладацької діяльності та наукові відкриття. Теорії стійкості, фігур і рівноваги рідких мас.
статья, добавлен 24.06.2016Разработка, программная реализация численного метода решения систем дифференциальных уравнений с произвольными, в том числе нелинейными, граничными условиями на основе методов Бубнова-Галеркина. Исследование устойчивости решений на основе метода Ляпунова.
автореферат, добавлен 08.02.2018Решение проблемы о структуре окрестности притягивающих, слабо притягивающих и неасимптотически устойчивых инвариантных множеств. Классификация компактных и замкнутых инвариантных множеств. Метод знакопостоянных функций Ляпунова для динамических систем.
автореферат, добавлен 19.08.2018Необхідні і достатні умови регулярності лінійних канонічних систем диференціальних рівнянь і відповідних лінійних розширень динамічних систем на торі. Умови регулярності лінійних розширень динамічних систем на торі в термінах двох функцій Ляпунова.
автореферат, добавлен 22.07.2014Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.
статья, добавлен 30.10.2016- 13. Нелинейная свободная система второго порядка, описываемая обыкновенным дифференциальным уравнением
Представление исходной нелинейной свободной системы второго порядка в виде системы дифференциальных уравнений первого порядка и ее линеаризация. Изучение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.
курсовая работа, добавлен 22.05.2012 Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Линеаризация как основной прием изучения устойчивости особой точки системы обыкновенных дифференциальных уравнений. Устойчивая, нейтральная и неустойчивая линеаризация. Способ отыскания инвариантных лучей системы. Построение линейной функции Ляпунова.
статья, добавлен 27.10.2018Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.
курсовая работа, добавлен 25.11.2013Математические модели объектов управления в обычных и частных производных. Динамические звенья и структурные схемы систем управления. Понятие матрицы передаточной функции. Сущность первой теоремы Ляпунова и определение устойчивости линейных систем.
учебное пособие, добавлен 28.12.2013- 18. Применение нетрадиционных (ненормированных) кватернионов для управления ориентацией твердого тела
Ненормированные кватернионы и обобщенная функция, прямой (второй) метод Ляпунова, использующий определенно положительные функции, для решения проблем управления ориентацией твердого тела. Математическое моделирование управления ориентацией твердого тела.
реферат, добавлен 10.03.2010 Методика определения максимального показателя Ляпунова решений системы дифференциальных уравнений. Анализ основных условий, которые гарантируют экспоненциальную устойчивость системы для любых нелинейных характеристик, лежащих в допустимых пределах.
статья, добавлен 30.10.2016Определение и особенности нелинейных систем. Методы фазовых портретов и гармонической линеаризации. Исследование вибрационной помехоустойчивости систем управления. Устойчивость нелинейных систем, метод Ляпунова. Критерий абсолютной устойчивости Попова.
реферат, добавлен 22.07.2015Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.
статья, добавлен 27.06.2016Основные недостатки существующих методов определения фильтрационных параметров. Метод модулирующих функций (М-метод), его сущность. Определение постоянных и переменных коэффициентов в дифференциальных уравнениях. Типичный график модулирующей функции.
статья, добавлен 10.07.2013Вивчення основних теорем другого методу Ляпунова. Знаходження умов Райєна на випадок стабілізації за частиною змінних. Розробка побудови системи динамічного зворотного зв'язку з використанням функції розривної керованості. Поняття інтегратора Брокетта.
автореферат, добавлен 26.09.2015Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.
курсовая работа, добавлен 03.11.2018Систематизація відомих алгоритмів розв’язування задач адаптивної ідентифікації й керування та їх модифікація. Побудова ітераційного, рекурентного алгоритмів оцінки параметрів і розв’язання питання про існування та єдиність розв'язку узагальненої задачі.
автореферат, добавлен 29.07.2014