Исправленные методы А.Ю. Виноградова: решения краевых задач, в том числе жестких краевых задач
Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Методика "переноса краевых условий" в произвольную точку интервала интегрирования. Расчет обратной матрицы. Замена метода численного интегрирования Рунге-Кутта.
Подобные документы
Анализ формул теории матриц для обыкновенных дифференциальных уравнений. Изучение метода дискретной ортогональной прогонки С.К. Годунова. Суть способа "половины констант" для решения краевых задач. Методика "сопряжения участков интервала интегрирования".
диссертация, добавлен 17.07.2016Решение систем обыкновенных дифференциальных уравнений в нейросетевом базисе. Схема соединения нейронов, реализующая решение системы обыкновенных дифференциальных уравнений в нейросетевом базисе методом Рунге-Кутты 1-го порядка. Графики решения задачи.
контрольная работа, добавлен 10.12.2012Особенность численного решения системы дифференциальных уравнений в среде MathCad. Характеристика метода Рунге-Кутта и модифицированного способа Эйлера. Главный анализ вычисления задачи аппроксимации. Сущность реализации количественного интегрирования.
контрольная работа, добавлен 30.10.2015Исследования различных методов интегрирования дифференциальных уравнений по точности вычисления. Структурная схема алгоритма и листинг программы Matlab. Реализация методов Эйлера, Эйлера-Коши и Рунге-Кутта 3 порядка. Экстраполяционный метод Адамса.
лабораторная работа, добавлен 28.04.2014Ознакомление с применением обыкновенных дифференциальных уравнений (ОДУ) в решении элементарных задач математического моделирования. Анализ способов решения ОДУ (задач Коши и краевых задач) в программах научного программирования (на примере Matlab).
лабораторная работа, добавлен 17.05.2021Задачи программирования в среде DELPHI. Процесс численного интегрирования. Основные методы, их характеристика. Их реализация: алгоритмы и листинг программ. Порядок тестирования и процесс сравнительного анализа. Реализация численного интегрирования.
курсовая работа, добавлен 19.12.2012Понятие дифференциальных уравнений. Рассмотрение теоретических знаний в вопросе численного решения дифференциальных уравнений на основе метода Рунге-Кутты и основных свойств данного метода. Приобретение опыта решения дифференциального уравнения.
реферат, добавлен 22.03.2014Применение обыкновенных дифференциальных уравнений для математического моделирования процессов в химической технологии. Сущность и использование метода Рунге-Кутта для программного моделирования кинетической схемы химического процесса на языке Паскаль.
курсовая работа, добавлен 12.04.2012Формула трапеций и формула средних прямоугольников. Применение численного интегрирования. Теория приближенного решения математических задач. Вычисление значения определенного интеграла по формуле Ньютона-Лейбница. Формула трапеций с постоянным шагом.
курсовая работа, добавлен 15.06.2013Дифференциальное уравнение первого порядка, решение задачи Коши, сущность метода Рунге-Кутта. Выбор языка программирования вычислительной системы. Разработка программного обеспечения для решения математических функций и тестирование его эффективности.
курсовая работа, добавлен 16.05.2016Изучение и характеристика специфических особенностей обыкновенных дифференциальных уравнений. Рассмотрение свойств методов Рунге-Кутта. Ознакомление с исправленным методом Эйлера. Исследование и анализ процесса выбора метода реализации программы.
курсовая работа, добавлен 02.11.2017Использование метода Рунге-Кутты-Фельберга для численного решения обыкновенных дифференциальных уравнений и их систем. Основные методы нахождения порядка аппроксимации. Внешний вид процедуры для определения номера самой левой точки в массиве данных.
контрольная работа, добавлен 28.04.2014Системы линейных уравнений с произвольным числом уравнений и неизвестных. Математические и алгоритмические основы решения задачи. Метод Гаусса для решения СЛАУ. Обращение матрицы, функциональные модели и блок-схемы решения задачи, программная реализация.
курсовая работа, добавлен 18.01.2010Углубленное рассмотрение возможностей численного решения дифференциальных уравнений. Изучение и обоснование возможностей применения метода Эйлера и рассмотрение примеров решений данными методами. Встроенные процедуры решения дифференциальных уравнений.
курсовая работа, добавлен 23.05.2021Решение уравнения методом проб/половинного деления и методом хорд. Вычисление системы уравнений способами обратной матрицы, Гаусса, Жордана-Гаусса, итераций. Вычисление дифференциального уравнения методом Эйлера и интеграла методами трапеций, Симпсона.
контрольная работа, добавлен 05.05.2018Решение дифференциальных уравнений как одна из важнейших математических задач. Исследование и оценка эффективности численных методов их решения. Специфика и условия использования персональных компьютеров, подбор и обоснование программный средств.
контрольная работа, добавлен 19.05.2014Суть метода Рунге-Кутта, его назначение и область применения. Разработка программы для нахождения приближенного решения обыкновенного дифференциального уравнения пятого порядка с заданным постоянным шагом. Выбор состава технических и программных средств.
курсовая работа, добавлен 23.04.2011Приведение численных методов решения нелинейных уравнений, систем линейных и нелинейных алгебраических уравнений, дифференциальных уравнений, определенных интегралов. Методы аппроксимации дискретных функций и методы решения задач программирования.
учебное пособие, добавлен 09.12.2014Характеристика проблемы точности вычислений, классификация погрешностей. Изучение методов численного интегрирования, оценка апостериорной погрешности. Описание особенностей численного дифференцирования, решения систем линейных и нелинейных уравнений.
методичка, добавлен 12.01.2015- 20. Численные методы
Численные методы решения нелинейных уравнений, систем линейных и нелинейных алгебраических уравнений, дифференциальных уравнений и определенных интегралов. Методы аппроксимации дискретных функций и методы решения задач линейного программирования.
методичка, добавлен 27.02.2012 Изучение и анализ влияния величины шага на точность интегрирования методами Рунге–Кутты второго и четвертого порядков. Ознакомление с основными программными модулями. Исследование поведения ошибки интегрирования, как функции независимой переменной.
курсовая работа, добавлен 09.12.2015Описание процесса построения параллельных алгоритмов управления шагом интегрирования при решении задач Коши для систем обыкновенных дифференциальных уравнений. Характеристика, особенности коллокационных одношаговых и многошаговых блочных методов.
статья, добавлен 28.02.2016Применение возможностей табличного процессора Microsoft Excel для решения вычислительных задач. Способы построения графиков, решения задач и систем уравнений методами обратной матрицы и Крамера. Алгоритм составления таблиц с помощью фильтрации данных.
практическая работа, добавлен 15.10.2012Приближенное решение дифференциальных уравнений первого порядка методом Эйлера. Рассмотрение основных причин погрешностей решения задач. Реализация алгоритма с помощью языка программирования C# и компьютерной программы Microsoft Visual Studio 2005.
курсовая работа, добавлен 03.09.2012Особенность изучения модифицированного метода Эйлера интегрирования дифференциальных уравнений первого порядка и способа достижения требуемой точности получаемого приближенного решения. Составление блок-схемы алгоритма вычисления поставленной задачи.
лабораторная работа, добавлен 11.02.2016