Анализ возможности оперативного прогнозирования нефтяных котировок
Прогнозирование стоимости нефти как важная задача для проведения государственной политики. Использование нелинейного метода наименьших квадратов для оценки параметров модели. Применение накопившейся статистической информации для уточнения прогноза.
Подобные документы
Особенности корреляционно-регрессионного метода прогнозирования. Классификация статистических исследований по степени комплексности. Предварительная обработка исходной информации в задачах прогнозной экстраполяции. Особенности метода наименьших квадратов.
реферат, добавлен 25.09.2015Классификация эконометрических моделей. Использование метода наименьших квадратов для нахождения параметров. Описание тренда и интервенции временного ряда. Построение модели стоимости обучения в высшем учебном заведении. Проведение анализа рынка квартир.
контрольная работа, добавлен 17.02.2014- 3. Особенности экстраполяции. Принципы прогнозирования. Классификация экономического прогнозирования
Экстраполяция - определение недостающего уровня, находящегося в начале или конце ранжированного ряда. Применение метода наименьших квадратов для расчета параметров функциональной зависимости. Основные этапы при прогнозировании экономических явлений.
контрольная работа, добавлен 24.11.2014 Определение цели и задач прогнозирования с учетом конкретного потребителя. Определение временных горизонтов прогнозирования. Предварительное определение типа прогноза, метода прогнозирования. Определение состава исходной информации, ее источников.
контрольная работа, добавлен 13.05.2012Базовый метод регрессионного анализа для оценки неизвестных параметров моделей по выборочным данным: история, свойства оценок. Парная линейная регрессия; взвешенный метод наименьших квадратов; авторегрессионное преобразование. Применение МНК в экономике.
реферат, добавлен 10.10.2012Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.
лабораторная работа, добавлен 05.09.2013Применение метода наименьших квадратов как способа регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Парная линейная регрессия и системы одновременных уравнений. Авторегрессионное преобразование.
реферат, добавлен 17.10.2012Линейная зависимость между объемом валового регионального продукта и численностью работающих в регионе. Применение метода экспоненциального сглаживания для прогноза финансовых расходов на капитальный ремонт жилищно-коммунального хозяйства города.
контрольная работа, добавлен 08.02.2019Сущность метода наименьших квадратов (МНК). Функциональная, стохастическая и корреляционная связи. Инструментарий МНК: процедуры проверки гипотезы о существовании связи, подбора лучшей функциональной модели, определения параметров уравнения регрессии.
лекция, добавлен 29.09.2013Особенности применения метода наименьших квадратов для минимизации ошибки как одного из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Основные виды уравнений множественной регрессии.
реферат, добавлен 24.09.2015Подготовка статистической базы эконометрического исследования. Детерминированные и стохастические процессы. Модели дискретного выбора. Бинарные модели, прогнозирование. Иерархический кластерный анализ, производственная функция. Метод наименьших квадратов.
шпаргалка, добавлен 18.03.2016Исследование сущности обобщенного метода наименьших квадратов, который применяется к преобразованным данным и позволяет получать оценки, обладающие не только свойством несмещенности, но и имеющие меньшие выборочные дисперсии. Типы математических моделей.
контрольная работа, добавлен 10.05.2011Проверка значимости исходного предположения. Прогноз размера инвестиций и стоимости валового регионального продукта. Идентификация структурной модели. Использование двухшагового метода наименьших квадратов. Анализ значений для эндогенной переменной.
курсовая работа, добавлен 28.05.2016Базовые понятия и задачи эконометрики. Основные этапы эконометрических исследований. Применение интервальной оценки в практическом статистическом анализе. Расчет параметров нелинейных регрессионных моделей. Условия применения метода наименьших квадратов.
презентация, добавлен 12.05.2014Построение математической модели системы на основе экспериментально полученных в процессе её функционирования входных и выходных сигналов. Оценки по критериям наименьших квадратов, наименьших взвешенных квадратов, максимального правдоподобия и риска.
лабораторная работа, добавлен 16.12.2013Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.
курсовая работа, добавлен 17.04.2010Основные принципы и методы построения линейных, нелинейных эконометрических моделей спроса, предложения. Трендовая модель экономической динамики. Использование для нахождения параметров модели либо метода наименьших квадратов, либо матричной записи.
контрольная работа, добавлен 13.06.2009Основные направления эконометрической деятельности. Этапы эконометрического исследования: постановка проблемы, спецификация моделей, оценка параметров модели. Сущность построения модели множественной регрессии. Анализ оценок метода наименьших квадратов.
контрольная работа, добавлен 03.01.2012Методы расчета параметров выборочного уравнения линейной регрессии с помощью метода наименьших квадратов. Оценка статистической значимости коэффициента корреляции, используя критерий Стьюдента. Анализ тесноты связи с помощью показателя детерминации.
учебное пособие, добавлен 13.01.2016Суть метода наименьших квадратов, его применение для оценки эконометрических уравнений. Вычисление вторых производных и проверка определенности матрицы Гессе. Построение доверительных интервалов в модели однофакторной регрессии с нормальными ошибками.
статья, добавлен 04.02.2014Основные задачи регрессионного анализа. Использование обобщенного метода наименьших квадратов. Характеристика оценки коэффициентов автокорреляции, дисперсии и ковариации. Особенность тенденции роста рассеяния случайных отклонений и построения матрицы.
презентация, добавлен 18.01.2015Основы прогнозирования и валютного рынка. Современное состояние валютного фонда России, его проблемы и тенденции. Прогнозирование доли доллара в общем объеме золотовалютных резервов методом экстраполяции временного ряда и методом наименьших квадратов.
курсовая работа, добавлен 20.06.2014Анализ модели CAPM, демонстрирующей прямую связь между риском ценной бумаги и ее доходностью, что позволяет ей показать справедливую доходность относительно имеющегося риска. Оценка модели с помощью метода наименьших квадратов; коэффициент детерминации.
статья, добавлен 11.03.2018Прогнозирование численности населения с помощью методов скользящей средней, наименьших квадратов и экспоненциального сглаживания. Построение графика потребления электроэнергии, определения сезонных колебаний и поквартальный прогноз объема потребления.
задача, добавлен 30.12.2010Основная цель создания сообщества добавленной стоимости. Проведение расчета коэффициентов регрессии методом наименьших квадратов. Определение зависимости стоимости бренда от количества функциональных единиц. Основные характеристики регрессионной модели.
статья, добавлен 25.03.2018