Система задач как предмет научного исследования
Анализ формирования математических понятий. Дедуктивный характер доказательств. Использование идеальных объектов как особенность математической абстракции. Связь между понятиями "упражнение" и "задача", признаки. Организация усвоения теоремы задачи.
Подобные документы
Понятие математической индукции. Полная и неполная индукция. Дедуктивный и индуктивный методы рассуждений. Обнаружение математических закономерностей Суть и условия применения метода математической индукции в образовательном процессе, в решении задач.
контрольная работа, добавлен 17.09.2009Рассмотрение математической науки как науки о структурах, порядке исчисления. История возникновения операций подсчёта, измерения и описания форм реальных объектов. Дедуктивный характер греческой математики. Формирование теории Пифагора в геометрии.
реферат, добавлен 04.02.2014Умение решать задачи. Психологические исследования проблемы обучения решению задач. можно ли научиться решать любые задачи. Практические и математические задачи. Правила для стандартных задач, как искать план решения задачи и процесс ее решения.
реферат, добавлен 26.09.2008Характеристика особенностей использования математических задач в процессе обучения для развития наглядно-образного мышления, творческих способностей и исследовательских навыков учащихся. Описание математических задач исследовательского характера.
статья, добавлен 18.11.2020Ознакомление с первоначальной и современной формулировами теоремы Пифагоа. Представление наиболее простого, алгебраического, геометрического и Евклидового методов доказательств теоремы. Определение значения данной теоремы в математических науках.
презентация, добавлен 15.03.2011Недостаточное внимание к математической составляющей в структуре задач, представленных в олимпиадных заданиях. Анализ учебников по финансовой грамотности и учебников математики на предмет наличия в них математических задач экономического содержания.
статья, добавлен 10.09.2020Выводы на основе наблюдений, опытов, полученные путем заключения от частного к общему. Значение индуктивных выводов в экспериментальных науках. Примеры применения индуктивного и дедуктивного методов рассуждений при решении математических задач.
презентация, добавлен 16.02.2014Цели, задачи и стадии теоретических исследований. Структурные компоненты решения задачи. Общая характеристика математических методов в научных исследованиях. Математический аппарат для построения математической модели. Контроль математической замкнутости.
лекция, добавлен 13.09.2017Основные правила составления двойственных задач. Связь между решениями прямой и двойственной задач. Геометрическая интерпретация двойственной задачи, ее примеры. Анализ устойчивости двойственных оценок. Двойственный симплекс-метод, области его применения.
лекция, добавлен 06.09.2017Понятие задачи-ловушки. Развитие логического мышления при их решении. Допущение обучающимися "смешных" ошибок по невнимательности при решении несложных математических задач. Примеры типичных ошибок. Психологическая инерция как главная причина трудностей.
статья, добавлен 15.03.2019Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
курсовая работа, добавлен 26.02.2020Обращение к известным доказательствам Теоремы Карно при решении ряда задач. Обобщение доказательств Теоремы Карно разными способами. Изменение теоремы при замене остроугольного треугольника на тупоугольный. Следствия, вытекающие из Теоремы Карно.
статья, добавлен 19.01.2021Определение понятий модели и моделирования. Описание методики решения текстовых задач. Анализ применения моделирования при решении задач на движение. Разработка фрагментов уроков с использованием математической модели при решении задач на движение.
курсовая работа, добавлен 29.05.2016- 14. Теория Фалеса
Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.
презентация, добавлен 01.02.2016 Формулировка и математическая модель транспортной задачи. Необходимое и достаточное условия разрешимости транспортной задачи. Методы построения начального опорного решения задачи. Алгоритм и особенности решения транспортных задач с неправильным балансом.
контрольная работа, добавлен 19.10.2011Роль задач на построение в психическом развитии подростков. Задачи на построение в школьных учебниках. Геометрические построения с использованием линейки. Применение теоремы Дезарга для построения параллельных прямых. Задачи с недоступными элементами.
методичка, добавлен 10.04.2012Изучение двойственности в линейном программировании. Классификация видов математических моделей двойственных задач. Характеристика симплексного метода решения математических задач. Определение минимального значения линейной функции в симметричных задачах.
реферат, добавлен 30.10.2010Математическая модель экономической задачи. Допустимое решение задачи линейного программирования. Основные теоремы линейного программирования. Алгоритм геометрического метода решения задач линейного программирования. Задача производственного планирования.
лекция, добавлен 10.10.2016Греческая система счисления (аттическая): использование букв алфавита. Дедуктивный характер греческой математики, изобретенный Фалесом. Решение технических задач с помощью математики александрийского периода. Современные достижения в области математики.
реферат, добавлен 06.07.2009Общая характеристика краевых задач Штурма-Лиувилля. Знакомство с особенностями и назначением теоремы Стеклова. Анализ свойств собственных значений и собственных функций задачи Штурма-Лиувилля. Рассмотрение обыкновенных дифференциальных уравнений.
контрольная работа, добавлен 02.12.2013История разработок и формирования теоремы Пифагора, причины ее популярности: простота – красота – значимость. Исследование некоторых классических доказательств теоремы Пифагора, известных из древних трактатов. Оценка важности и значимости данной теоремы.
реферат, добавлен 10.11.2010Решение практических задач математическими методами путем формулировки задачи, выбора метода исследования полученной математической модели, анализа полученного математического результата. Особенности построения и требования к математическим моделям.
реферат, добавлен 03.12.2014Рассмотрение теоремы умножения вероятностей. Характеристика основных задач математической статистики. Выборка как набор объектов, случайно отобранных из генеральной совокупности, виды: повторная, бесповторная. Особенности непрерывных случайных величин.
дипломная работа, добавлен 07.12.2012- 24. Об опыте использования математических задач с экономическим содержанием в профориентационной работе
Исследование возможностей использования математических задач с экономическим содержанием в профориентационной работе с обучающимися. Характеристика примеров решения задач на проценты и задач, в которых используется понятие функции и ее производной.
статья, добавлен 18.07.2021 Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.
книга, добавлен 19.05.2011