Вектор-функция скалярного аргумента

Годограф вектор функции. Проекции вектора на оси прямоугольной декартовой системы координат в пространстве. Предел, непрерывность, производная вектор-функции. Правила дифференцирования. Касательная, нормаль к плоской кривой. Кривизна, радиус кривизны.

Подобные документы

  • Понятие системы координат. Использование прямоугольной (декартовой), полярной, цилиндрической, сферической системы координат при решении задач. Определение координат радиус-вектора. Формулы перехода от цилиндрических и сферических координат к декартовым.

    реферат, добавлен 16.05.2016

  • Способы получения уравнения касательной. Определение нормали и инвариантов плоской кривой. Построение соприкасающихся и спрямляющихся плоскостей. Выражение кривизны и кручения через произвольный радиус-вектор. Параметрические уравнения поверхности.

    лекция, добавлен 01.09.2017

  • Первая и вторая квадратичная форма. Построение проекции вектора кривизны линии на нормаль поверхности в точке, через которую проходит эта кривая. Изучение кривизны всех линий на поверхности, рассмотрение плоских сечений. Уравнение индикатрисы Дюпена.

    контрольная работа, добавлен 01.09.2017

  • Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.

    реферат, добавлен 26.06.2013

  • Полное приращение функции. Полный дифференциал функции. Касательная плоскость и нормальный вектор. Точки экстремума функции. Частные производные первого и второго порядка от функции. Направляющие косинусы вектора. Тангенс угла наклона касательной.

    контрольная работа, добавлен 06.06.2012

  • Метод координат в пространстве. Решение задачи на многогранник, цилиндр, конус. Определение координат вектора разности. Условие компланарности. Введение прямоугольной системы координат. Расчет длинны, используя формулу скалярного произведения векторов.

    контрольная работа, добавлен 26.02.2011

  • Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.

    лекция, добавлен 01.09.2017

  • Особенности декартовой системы координат в трехмерном пространстве. Понятие предела, непрерывность функции нескольких переменных. Свойства функций непрерывных в ограниченной замкнутой области. Определение частной производной функции нескольких аргументов.

    контрольная работа, добавлен 29.05.2015

  • Нахождение длинны стороны, внутреннего угла, точки пересечения высот. Уравнение медианы, проведенной через вершину. Система линейных неравенств. Понятие функции и её график. Координаты вектора в базисе. Производная функции и неопределённый интеграл.

    контрольная работа, добавлен 16.12.2012

  • Вычисление пределов функций. Правила вычисления производных. Нахождение наибольших и наименьших значений функции на отрезке. Запись уравнения касательной и нормали в общем виде. Область определения функции. Пересечение с осями координат, нули функции.

    контрольная работа, добавлен 29.04.2019

  • Построение уравнений прямой с направляющим и нормальным вектором. Условия перпендикулярности вектора. Построение уравнения прямой с угловым коэффициентом. Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.

    презентация, добавлен 06.09.2017

  • Предел функции как величина, к которой стремится рассматриваемая функция при стремлении её аргумента к данной точке. Понятие функции нескольких переменных, вводимое для изучения подобных зависимостей. Область определения и непрерывность функции.

    эссе, добавлен 18.10.2013

  • Вектор, выходящий из начала координат в точку, соответствующую коэффициентам при переменных целевой функции. Нахождения значения нулевой функции. План перевозок по доставке требуемой продукции из пунктов А в пункты назначения. Значение целевой функции.

    контрольная работа, добавлен 14.12.2013

  • Решение систем линейных уравнений методом Гаусса. Линейные операции над векторами и разложение вектора по ортам координатных осей. Геометрический и физический смысл определенного интеграла. Предел и непрерывность функции комплексного переменного.

    курс лекций, добавлен 18.04.2016

  • Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.

    курс лекций, добавлен 29.05.2014

  • Координаты вектора в прямоугольном трехмерном пространстве. Представление заданного вектора в сферических координатах. Сопутствующий параллелепипед и его три диагонали. Формы преобразования прямоугольных координат в различные сферические координаты.

    практическая работа, добавлен 19.01.2011

  • Понятие и свойства вектора как математической абстракции объекта. Исследование декартовой системы координат в пространстве. Расчет плоскостей. Виды параметрических уравнений прямой. Связь полярных координат с декартовыми. Гиперболический параболоид.

    лекция, добавлен 22.11.2015

  • Определение понятия единичного и нулевого вектора. Рассмотрение коллинеарных векторов. Ознакомление с процессом геометрической проекции вектора на ось. Изучение декартовых прямоугольных координат вектора в пространстве. Анализ формул деления отрезка.

    лекция, добавлен 07.07.2015

  • Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.

    презентация, добавлен 13.02.2016

  • Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.

    презентация, добавлен 29.09.2017

  • Неявные функции, условие их существования и дифференцируемости. Касательная плоскость и нормаль к поверхности. Геометрический смысл производных и дифференциала. Градиент функции в точке координат. Рассмотрение значения производной по направлению.

    лекция, добавлен 26.01.2014

  • Суть ортонормированной (декартовой) системой координат, в которой единицы измерения по всем осям равны друг другу. Действия над векторами в координатной форме, вычисление направляющих косинусов. Уравнение окружности, общее преобразование систем координат.

    контрольная работа, добавлен 15.05.2011

  • Описание графической теории и алгоритма машинного определения кривизны плоской кривой. Дополнительный метод решения инженерных задач через графические вычисления. Определение параметров кривизны (эволюты) эллипса ввиду отсутствия его нулевых точек.

    статья, добавлен 03.12.2018

  • Понятие и порядок определения точки сгущения множества. Исследование непрерывных функций. Частная производная функции. Дифференцируема в точке функция и основные требования к ней. Определение касательного вектора и плоскости к поверхности. Матрица Якоби.

    шпаргалка, добавлен 11.04.2012

  • Место Рене Декарта в истории математики. Научное описание прямоугольной системы координат в работе "Рассуждение о методе". Рассмотрение связи геометрии и алгебры с помощью скалярного произведения векторов и угла между ними в научных трудах Декарта.

    статья, добавлен 27.01.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.