Оценка адекватности модели и существенности параметров линейной регрессии
Дисперсионный анализ в математической статистике как самостоятельный инструмент статистического анализа, его понятие и применение в эконометрике как вспомогательного средства для изучения качества регрессионной модели. Линейный коэффициент корреляции.
Подобные документы
Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.
контрольная работа, добавлен 23.05.2021Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.
доклад, добавлен 19.11.2012Статистическое описание и выборочные характеристики двумерного случайного вектора. Предмет линейного регрессионного анализа. Особенности однофакторного дисперсионного анализа. Уравнение выборочной линейной регрессии. Выборочное значение статистики.
курсовая работа, добавлен 22.10.2017Статистическое описание и выборочные характеристики двумерного случайного вектора. Построение диаграммы рассеяния. Однофакторный дисперсионный анализ. Определение линейного контраста и выборочной линейной регрессии. Расчет границ доверительного интервала.
контрольная работа, добавлен 16.10.2017Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.
презентация, добавлен 05.06.2012Рассмотрение статистического описания и выборочных характеристик двумерного случайного вектора. Построение диаграммы рассеяния, нанесение на нее уравнения регрессии. Определение качества аппроксимации результатов наблюдений выборочной регрессии.
курсовая работа, добавлен 13.10.2017Ознакомление с условиями поиска полиномиальной регрессионной математической модели. Вычисления для линейной РОФМ. Формульное определение критериев выделяющегося максимального значения. Промежуточные показатели при расчетах коэффициентов регрессии.
методичка, добавлен 08.06.2015Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.
контрольная работа, добавлен 23.05.2015Сущность и типы уравнения регрессии как формулы статистической связи между переменными. Теоретическая и прямая линии регрессии, проверка адекватности уравнения регрессии. Оценка значимости парного коэффициента корреляции и коэффициент детерминации.
контрольная работа, добавлен 26.06.2014F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Применение корреляционного анализа в математической статистике. Классическая линейная модель множественной регрессии. Использование метода наименьших квадратов для оценки параметров модели множественной регрессии. Условия и теорема Гаусса-Маркова.
презентация, добавлен 15.12.2014Определение параметров для составления линейного уравнения парной регрессии посредствам построения электронной таблицы Excel. Оценка качества построенной модели на основе коэффициента парной корреляции, детерминации и средней ошибки аппроксимации.
лабораторная работа, добавлен 30.03.2015Расчет линейного коэффициента парной корреляции, коэффициента детерминации и ошибки аппроксимации. Определение значимости параметров регрессии с помощью F-критерия Фишера и t-критерия Стьюдента. Скорректированный коэффициент множественной детерминации.
контрольная работа, добавлен 27.04.2017Построение диаграммы рассеивания с нанесенной на нее сеткой для группировки данных. Проверка заданной гипотезы об отсутствии линейной статистической связи между компонентами. Получение интервальной оценки для истинного значения коэффициента корреляции.
курсовая работа, добавлен 05.11.2011Основы математической модели дисперсионного анализа, его сущность, виды, возможности и применение для исследования влияния одной или нескольких качественных переменных на одну зависимую количественную переменную (отклик). Оценка результатов и показатели.
курсовая работа, добавлен 08.06.2014Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.
контрольная работа, добавлен 20.06.2012Построение регрессионных моделей по рядам динамики. Использование критериев Фишера и Стьюдента, формулы линейного коэффициента корреляции. Оценка параметров уравнения регрессии, применение метода наименьших квадратов. Примеры гетероскедастичности.
контрольная работа, добавлен 25.04.2015Статистическое описание и выборочные характеристики двумерного случайного вектора. Однофакторный дисперсионный анализ. Границы доверительных интервалов для дисперсии ошибок наблюдений. Построение диаграммы рассеяния, квантиль распределения Фишера.
курсовая работа, добавлен 16.10.2017Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
краткое изложение, добавлен 17.03.2015Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
курсовая работа, добавлен 12.12.2014Характеристика понятия и сущности методики оценки параметров распределения, проверки гипотез, изучение системы случайных величин: корреляции, регрессии. Анализ особенностей статистического оценивания. Характеристика выборочного коэффициента корреляции.
курсовая работа, добавлен 21.09.2017Рассмотрение задачи параметрического оценивания спектральной плотности мощности случайного процесса на основе построения линейной разностной модели временного ряда исследуемого случайного процесса. Использование процедуры статистического сглаживания.
статья, добавлен 28.01.2020Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.
презентация, добавлен 20.01.2015Распределение температуры вдоль тонкого цилиндрического стержня, помещенного в высокотемпературный поток жидкости или газа путем анализа математической модели. Задача регрессии. Метод наименьших квадратов. Проверка гипотезы об адекватности модели.
контрольная работа, добавлен 10.06.2011Понятие состоятельной, несмещенной, эффективной оценки параметра в математической статистике. Корреляция как статистическая взаимосвязь двух или нескольких случайных величин, ее математическая мера и виды. Корреляционный анализ как метод обработки данных.
контрольная работа, добавлен 14.01.2010