Основные правила комбинаторики
Термин "комбинаторика" и его введение в математический обиход знаменитым Лейбницем. Использование комбинаторики при решении задач алгебры, геометрии, производящих функций. Основные правила – суммы и произведения. Формулы размещений без повторений.
Подобные документы
Основные комбинаторные формулы. Решение задач комбинаторики средствами MS Excel. Использование встроенных функций MS Excel для вычисления перестановок, сочетаний, размещений. Основные понятия и правила комбинаторики. Свойства биномиальных коэффициентов.
методичка, добавлен 17.02.2014Исторические аспекты становления комбинаторики и основные утверждения, касающиеся конечных множеств. Решение задач с помощью правил суммы и произведения, а также методом пересекающихся множеств, кругов Эйлера, размещением или перестановкой без повторений.
реферат, добавлен 15.11.2010Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
учебное пособие, добавлен 16.02.2014Общие правила комбинаторики, определение понятий множества и факториала. Содержание разделов комбинаторики - перечислительного, экстремального и вероятностного. Понятие о размещении, перестановке и сочетании элементов. Решение комбинаторных задач.
реферат, добавлен 21.12.2016Краткая история и значение термина "комбинаторика". Разнообразие комбинаторных формул. Правило суммы и произведения, пересекающиеся множества. Круги Эйлера. Размещения и сочетания без повторений. Перестановки с повторениями. Примеры решения задач.
реферат, добавлен 22.01.2013Использование формул комбинаторики при непосредственном вычислении вероятностей. Понятие и примеры перестановок, размещений и сочетаний. Выявление и оценка количества комбинаций, которые можно составить из элементов заданного конечного множества.
презентация, добавлен 20.11.2011История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.
реферат, добавлен 12.11.2016Возникновение комбинаторики как науки, важные достижения и интерес к комбинаторным задачам. Значение комбинаторики в различных областях науки и производственной сферы. Общие формулы, позволяющие решать комбинаторные задачи, интересные примеры.
реферат, добавлен 13.04.2014Понятие комбинаторики, история развития науки: древний период, средневековье, новое время. Современное развитие комбинаторики. Анализ элементов комбинаторики: размещение с повторением, без повторения, перестановки и сочетания. Примеры из комбинаторики.
реферат, добавлен 06.04.2016Предмет комбинаторики, ее определение как одного из раздела математики. История возникновения и развития комбинаторики как отдельного раздела. Особенности комбинаторики на Востоке, в Индии и в Китае: научные достижения математики и их многообразие.
реферат, добавлен 07.07.2014Знакомство с основами математического раздела, изучающего дискретные объекты и множества. Фундаментальные понятия и обозначения, встречающиеся в комбинаторики. Процесс нахождения числа перестановок с помощью Excel. Сочетание и размещение подмножеств.
лабораторная работа, добавлен 16.12.2013- 12. Комбинаторика
Сущность и составные части комбинаторики как ключевой ветви математики. Теория конфигураций и перечисления. Правило суммы и произведения. Основные свойства сочетаний. Решение задачи с помощью треугольника Паскаля. Комбинаторные конфигурации и блок-схемы.
контрольная работа, добавлен 17.12.2011 Формулы комбинаторики. Расчет количества перестановок и сочетаний объектов. Факториал - произведение всех натуральных чисел. Значение расположения элементов. Способы размещения, перестановки предметов и распределения между ними уникальных атрибутов.
презентация, добавлен 10.11.2015Основы теории вероятностей, комбинаторики и статистики. Правила суммы и произведения. Непересекающиеся конечные множества. Арифметический треугольник паскаля и бином ньютона. Интервальная таблица частот. Методика преподавания элементов стохастики.
учебное пособие, добавлен 30.04.2014Рассмотрено формирование элементарной комбинаторики в различные промежутки времени. Описано получение независимых формул для подсчета сочетаний, размещений и перестановок элементов конечных дискретных множеств. Показан вклад Паскаля, Лейбница и Бернулли.
статья, добавлен 26.04.2019Типы событий: достоверные, невозможные, случайные. Понятие, предмет исследования комбинаторики, история возникновения и развития соответствующего научного направления. Применение методов теории вероятностей в разных сферах. Основные комбинаторные задачи.
реферат, добавлен 03.05.2019Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.
учебное пособие, добавлен 12.03.2015Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.
реферат, добавлен 07.11.2015Характеристика основных правил комбинаторики. Исследование теоремы о включениях и исключениях. Особенность комбинаторного смысла числа перестановок. Анализ порядка выбора монет. Упрощение вычислительных действий как главная цель изучения бинома Ньютона.
лекция, добавлен 25.10.2019Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.
учебное пособие, добавлен 18.01.2015Комбинаторика как раздел дискретной математики, изучающий дискретные объекты, множества и отношения на них. История термина "комбинаторика", элементы этой области математики. Примеры решения комбинаторных задач: перестановки, размещения, сочетания.
контрольная работа, добавлен 09.01.2019Использование математической схемы при обучении учащихся решению задач. Применение занимательной комбинаторики для обучения младших школьников. Психологические особенности формирования универсальных учебных действий у учащихся начальных классов.
статья, добавлен 04.08.2021Понятие о науке "Комбинаторика". Комбинаторика как раздел математики, изучающий размещения, перестановки, сочетания. Комбинаторика в различных областях жизнедеятельности: в литературе, на шахматной доске и в играх. Фигурные числа, старинные задачи.
реферат, добавлен 13.05.2019